期刊文献+

Forecasting of Runoff and Sediment Yield Using Artificial Neural Networks 被引量:1

Forecasting of Runoff and Sediment Yield Using Artificial Neural Networks
下载PDF
导出
摘要 Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models. Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models.
机构地区 不详
出处 《Journal of Water Resource and Protection》 2009年第5期368-375,共8页 水资源与保护(英文)
关键词 Artificial NEURAL NETWORK Forecasting RUNOFF SEDIMENT YIELD Artificial Neural Network Forecasting Runoff Sediment Yield
  • 相关文献

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部