摘要
Struvite (MgNH<sub>4</sub>PO<sub>4</sub>?6H<sub>2</sub>O) can be produced from municipal wastewater and has been shown to be an alternative fertilizer-phosphorus (P) source for various crops, but little is known about the runoff-water-quality implications from soil-applied struvite. The objective of this study was to evaluate the effects of soil [Creldon (Oxyaquic Fragiudalfs), Dapue (Fluventic Hapludolls), Roxana (Typic Udifluvents), and Calloway (Aquic Fraglossudalfs) series], fertilizer-P source [synthetically produced electrochemically precipitated struvite (ECSTsyn), real-wastewater-derived ECST (ECSTreal), chemically precipitated struvite (CPST), and monoammonium phosphate (MAP)], and water source (rainwater, groundwater, and struvite-removed real wastewater) over time on runoff-water-quality parameters from laboratory-conducted, rainfall-runoff simulations. Mesh tea bags containing each soil-fertilizer treatment combination were rained on with each water source (Trial 1), incubated for 6 months, and rained on again (Trial 2) to evaluate runoff-water quality. Struvite fertilizers had similar runoff-water-quality properties to those from MAP. In Trial 1, runoff total P (TP) concentration differences (i.e., soil-fertilizer-water-type response minus control response minus blank response) from ECSTsyn or ECSTreal were 1 to 5 times larger than MAP and CPST for all water-soil-fertilizer-P source treatment combinations, except for the Creldon-groundwater and Roxana-wastewater combinations. In both trials, runoff TP decreased over time in all water-soil and soil-fertilizer-P source treatment combinations, except for the Roxana-CPST combination where TP increased over time by 46%. The similar water-quality responses from the struvite fertilizers among the various soils and water types compared to MAP suggest that struvite has similar runoff-water-quality implications as at least one widely used, commercially available fertilizer-P source.
Struvite (MgNH<sub>4</sub>PO<sub>4</sub>?6H<sub>2</sub>O) can be produced from municipal wastewater and has been shown to be an alternative fertilizer-phosphorus (P) source for various crops, but little is known about the runoff-water-quality implications from soil-applied struvite. The objective of this study was to evaluate the effects of soil [Creldon (Oxyaquic Fragiudalfs), Dapue (Fluventic Hapludolls), Roxana (Typic Udifluvents), and Calloway (Aquic Fraglossudalfs) series], fertilizer-P source [synthetically produced electrochemically precipitated struvite (ECSTsyn), real-wastewater-derived ECST (ECSTreal), chemically precipitated struvite (CPST), and monoammonium phosphate (MAP)], and water source (rainwater, groundwater, and struvite-removed real wastewater) over time on runoff-water-quality parameters from laboratory-conducted, rainfall-runoff simulations. Mesh tea bags containing each soil-fertilizer treatment combination were rained on with each water source (Trial 1), incubated for 6 months, and rained on again (Trial 2) to evaluate runoff-water quality. Struvite fertilizers had similar runoff-water-quality properties to those from MAP. In Trial 1, runoff total P (TP) concentration differences (i.e., soil-fertilizer-water-type response minus control response minus blank response) from ECSTsyn or ECSTreal were 1 to 5 times larger than MAP and CPST for all water-soil-fertilizer-P source treatment combinations, except for the Creldon-groundwater and Roxana-wastewater combinations. In both trials, runoff TP decreased over time in all water-soil and soil-fertilizer-P source treatment combinations, except for the Roxana-CPST combination where TP increased over time by 46%. The similar water-quality responses from the struvite fertilizers among the various soils and water types compared to MAP suggest that struvite has similar runoff-water-quality implications as at least one widely used, commercially available fertilizer-P source.