期刊文献+

Effects of Aeration Rates and Patterns on Shortcut Nitrification and Denitrification

Effects of Aeration Rates and Patterns on Shortcut Nitrification and Denitrification
下载PDF
导出
摘要 The effects of aeration rates and aeration patterns on the oxidation of ammonia-nitrogen into nitrite were investigated. The influent high ammonia-nitrogen synthetic wastewater resembled to those of the catalytic process of the petrochemical refinery. The method involved the biological shortcut nitrification and denitrification lab-scale’s sequencing batch reactor (SBR) process based on intermittent aerations and aeration patterns. All the operations were carried out in a 20 L working volume SBR bioreactor, and the influent synthetic wastewater’s concentration was always 1000 mg/L ammonia-nitrogen NH<sub>4</sub>-N concentration at a C/N (carbon/nitrogen) ratio of 2.5:1. Effective shortcut nitrification to nitrite was registered at 1.1 mg-O<sub>2</sub>/L (i.e. 9 L-air/min) with 99.1% nitrification efficiency, 99.0% nitritation rate and 2.6 mg-NO<sub>3</sub>-</sup>-N/L nitrate concentration. The best results with 99.3% nitrification efficiency were recorded when operating at 1.4 mg-O<sub>2</sub>/L (i.e. 12 L-air/min). According to these experiments, it results that the nitrite accumulation rate was related to aeration rate and cycle’s duration. However, at 1.7 mg-O<sub>2</sub>/L (i.e. 15 L-air/min), the system was limited by an increase in nitrate concentration with more than 5 mg/L which could be a point of reverse to conventional nitrification. The best total nitrogen (TN) removal was about 71.5%. The effects of aeration rates and aeration patterns on the oxidation of ammonia-nitrogen into nitrite were investigated. The influent high ammonia-nitrogen synthetic wastewater resembled to those of the catalytic process of the petrochemical refinery. The method involved the biological shortcut nitrification and denitrification lab-scale’s sequencing batch reactor (SBR) process based on intermittent aerations and aeration patterns. All the operations were carried out in a 20 L working volume SBR bioreactor, and the influent synthetic wastewater’s concentration was always 1000 mg/L ammonia-nitrogen NH<sub>4</sub>-N concentration at a C/N (carbon/nitrogen) ratio of 2.5:1. Effective shortcut nitrification to nitrite was registered at 1.1 mg-O<sub>2</sub>/L (i.e. 9 L-air/min) with 99.1% nitrification efficiency, 99.0% nitritation rate and 2.6 mg-NO<sub>3</sub>-</sup>-N/L nitrate concentration. The best results with 99.3% nitrification efficiency were recorded when operating at 1.4 mg-O<sub>2</sub>/L (i.e. 12 L-air/min). According to these experiments, it results that the nitrite accumulation rate was related to aeration rate and cycle’s duration. However, at 1.7 mg-O<sub>2</sub>/L (i.e. 15 L-air/min), the system was limited by an increase in nitrate concentration with more than 5 mg/L which could be a point of reverse to conventional nitrification. The best total nitrogen (TN) removal was about 71.5%.
作者 Ali Ibrah Landi Jun Lu Ali Ibrah Landi;Jun Lu(Department of Chemistry, Faculty of Science and Technique, Dan Dicko Dankoulodo University of Maradi (UDDM), Maradi, Niger;College of Resources and Environmental Engineering, East China University of Science and Technology (ECUST), Shanghai, China)
出处 《Journal of Environmental Protection》 CAS 2022年第9期640-656,共17页 环境保护(英文)
关键词 Wastewater Treatment SBR Partial Nitrification/Denitrification Intermittent Aeration Aeration Rate Aeration Pattern Total Nitrogen (TN) Removal Wastewater Treatment SBR Partial Nitrification/Denitrification Intermittent Aeration Aeration Rate Aeration Pattern Total Nitrogen (TN) Removal
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部