摘要
The effects of aeration rates and aeration patterns on the oxidation of ammonia-nitrogen into nitrite were investigated. The influent high ammonia-nitrogen synthetic wastewater resembled to those of the catalytic process of the petrochemical refinery. The method involved the biological shortcut nitrification and denitrification lab-scale’s sequencing batch reactor (SBR) process based on intermittent aerations and aeration patterns. All the operations were carried out in a 20 L working volume SBR bioreactor, and the influent synthetic wastewater’s concentration was always 1000 mg/L ammonia-nitrogen NH<sub>4</sub>-N concentration at a C/N (carbon/nitrogen) ratio of 2.5:1. Effective shortcut nitrification to nitrite was registered at 1.1 mg-O<sub>2</sub>/L (i.e. 9 L-air/min) with 99.1% nitrification efficiency, 99.0% nitritation rate and 2.6 mg-NO<sub>3</sub>-</sup>-N/L nitrate concentration. The best results with 99.3% nitrification efficiency were recorded when operating at 1.4 mg-O<sub>2</sub>/L (i.e. 12 L-air/min). According to these experiments, it results that the nitrite accumulation rate was related to aeration rate and cycle’s duration. However, at 1.7 mg-O<sub>2</sub>/L (i.e. 15 L-air/min), the system was limited by an increase in nitrate concentration with more than 5 mg/L which could be a point of reverse to conventional nitrification. The best total nitrogen (TN) removal was about 71.5%.
The effects of aeration rates and aeration patterns on the oxidation of ammonia-nitrogen into nitrite were investigated. The influent high ammonia-nitrogen synthetic wastewater resembled to those of the catalytic process of the petrochemical refinery. The method involved the biological shortcut nitrification and denitrification lab-scale’s sequencing batch reactor (SBR) process based on intermittent aerations and aeration patterns. All the operations were carried out in a 20 L working volume SBR bioreactor, and the influent synthetic wastewater’s concentration was always 1000 mg/L ammonia-nitrogen NH<sub>4</sub>-N concentration at a C/N (carbon/nitrogen) ratio of 2.5:1. Effective shortcut nitrification to nitrite was registered at 1.1 mg-O<sub>2</sub>/L (i.e. 9 L-air/min) with 99.1% nitrification efficiency, 99.0% nitritation rate and 2.6 mg-NO<sub>3</sub>-</sup>-N/L nitrate concentration. The best results with 99.3% nitrification efficiency were recorded when operating at 1.4 mg-O<sub>2</sub>/L (i.e. 12 L-air/min). According to these experiments, it results that the nitrite accumulation rate was related to aeration rate and cycle’s duration. However, at 1.7 mg-O<sub>2</sub>/L (i.e. 15 L-air/min), the system was limited by an increase in nitrate concentration with more than 5 mg/L which could be a point of reverse to conventional nitrification. The best total nitrogen (TN) removal was about 71.5%.
作者
Ali Ibrah Landi
Jun Lu
Ali Ibrah Landi;Jun Lu(Department of Chemistry, Faculty of Science and Technique, Dan Dicko Dankoulodo University of Maradi (UDDM), Maradi, Niger;College of Resources and Environmental Engineering, East China University of Science and Technology (ECUST), Shanghai, China)