摘要
This study was designed and carried out to characterize hydrocarbonoclastic microbial communities in soil polluted with artisanal refined hydrocarbon at Trans Amadi, Phalga Local Government Area of Rivers State, Nigeria. Heterotrophic bacteria count ranged from 8.0 × 10<sup>5</sup> cfu/gm for sample TSAS1, and 2.1 × 10<sup>6</sup> cfu/gm for sample TSAS2 while TSAS3 was too numerous to count (TNTC). Hydrocarbon utilizing bacteria count ranged from 1.1 × 10<sup>5</sup> cfu/gm for TSAS1, and 5.9 × 10<sup>4</sup> cfu/gm for TSAS2, while TSAS3 was 5.4 × 10<sup>4</sup> cfu/gm. Physiochemical parameters of the soil were determined. The ranges obtained were pH 6.6, conductivity 125 μs/cm, temperature 27.3°C, moisture 7.72, total nitrogen 0.056%, phosphate 1.554 ppm, potassium 145.87 ppm, lead 7.02 ppm, cadmium 0.41 ppm, nickel 1.96 ppm, copper 1.14 ppm, total petroleum hydrocarbon 1487.24181 ppm, polycyclic aromatic hydrocarbon 12.85287 ppm. Isolates of hydrocarbon utilizing bacteria characterized belonged to the genera Escherichia coli, Klebsiella sp., Lactobacillus sp., Enterobacter sp., Serratia sp., and Proteus sp. The findings in this study have revealed the abilities of these groups of bacteria to be employed in bioremediation/biodegradation clean-up practices. Thus the polluted soil may harbour important genera of bacterial species that may have beneficial applications in environmental microbiology for future remediation processes.
This study was designed and carried out to characterize hydrocarbonoclastic microbial communities in soil polluted with artisanal refined hydrocarbon at Trans Amadi, Phalga Local Government Area of Rivers State, Nigeria. Heterotrophic bacteria count ranged from 8.0 × 10<sup>5</sup> cfu/gm for sample TSAS1, and 2.1 × 10<sup>6</sup> cfu/gm for sample TSAS2 while TSAS3 was too numerous to count (TNTC). Hydrocarbon utilizing bacteria count ranged from 1.1 × 10<sup>5</sup> cfu/gm for TSAS1, and 5.9 × 10<sup>4</sup> cfu/gm for TSAS2, while TSAS3 was 5.4 × 10<sup>4</sup> cfu/gm. Physiochemical parameters of the soil were determined. The ranges obtained were pH 6.6, conductivity 125 μs/cm, temperature 27.3°C, moisture 7.72, total nitrogen 0.056%, phosphate 1.554 ppm, potassium 145.87 ppm, lead 7.02 ppm, cadmium 0.41 ppm, nickel 1.96 ppm, copper 1.14 ppm, total petroleum hydrocarbon 1487.24181 ppm, polycyclic aromatic hydrocarbon 12.85287 ppm. Isolates of hydrocarbon utilizing bacteria characterized belonged to the genera Escherichia coli, Klebsiella sp., Lactobacillus sp., Enterobacter sp., Serratia sp., and Proteus sp. The findings in this study have revealed the abilities of these groups of bacteria to be employed in bioremediation/biodegradation clean-up practices. Thus the polluted soil may harbour important genera of bacterial species that may have beneficial applications in environmental microbiology for future remediation processes.
作者
Asime Oba
Barka John
Jamilu Garba
Asitonka James Oba
Kwata Veronica John
Stephen Bitrus Balami
Okeke Uchechukwu
Jasini Athanda Musa
Anthony Ofili
Asime Oba;Barka John;Jamilu Garba;Asitonka James Oba;Kwata Veronica John;Stephen Bitrus Balami;Okeke Uchechukwu;Jasini Athanda Musa;Anthony Ofili(Independent Researcher;Department of Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria;Department of Pipeline Products and Marketing Company, Nigeria National Petroleum Corporation, Abuja, Nigeria;Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria;Department of Microbiology, National Agency for Food and Drug Administration Control, Abuja, Nigeria;Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria;Department of Microbiology, Central Reference Laboratory, Synlab, Lagos, Nigeria)