摘要
Measuring Terrestrial Water Transient Storage in its various components of Earth by orbiting sensors on satellites has been a quest for more than 40<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">years. Not only in the Hydrology community but also Climatology and Meteorology, Geology, Geodesy, Geophysics and Oceanography ha</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ve</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the challenge </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> attempt to first learn how to measure, then measure and assess the results. The importance is that Earth’s environments are changing and human communities, local and national governing bodies need ability to assess current hazards and to have predictive capabilities for society both local and international. So too the Gravity Recovery and Climate Experiment (GRACE) has joined the ongoing international space-based missions. There will be more after GRACE. For now is an important juncture in the effort to measure Terrestrial Water Transient Storage to ask, “What can GRACE measure and what is GRACE measuring”? Results of this investigation of the GRACE datasets by spectral methods indicate the detection of the Chandler Wobble but the Annual Wobble is aliased and below significance. Therefore, interpretations of Terrestrial Water Transient Storage are failed.</span></span></span>
Measuring Terrestrial Water Transient Storage in its various components of Earth by orbiting sensors on satellites has been a quest for more than 40<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">years. Not only in the Hydrology community but also Climatology and Meteorology, Geology, Geodesy, Geophysics and Oceanography ha</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ve</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the challenge </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> attempt to first learn how to measure, then measure and assess the results. The importance is that Earth’s environments are changing and human communities, local and national governing bodies need ability to assess current hazards and to have predictive capabilities for society both local and international. So too the Gravity Recovery and Climate Experiment (GRACE) has joined the ongoing international space-based missions. There will be more after GRACE. For now is an important juncture in the effort to measure Terrestrial Water Transient Storage to ask, “What can GRACE measure and what is GRACE measuring”? Results of this investigation of the GRACE datasets by spectral methods indicate the detection of the Chandler Wobble but the Annual Wobble is aliased and below significance. Therefore, interpretations of Terrestrial Water Transient Storage are failed.</span></span></span>
作者
Reginald R. Muskett
Reginald R. Muskett(Geophysical Institute, University of Alaska Fairbanks, Fairbanks, USA)