期刊文献+

Hydrogeomorphological Study in Bamanghaty Subdivision of Mayurbhanj District, Odisha an Integrated Remote Sensing and GIS Approach

Hydrogeomorphological Study in Bamanghaty Subdivision of Mayurbhanj District, Odisha an Integrated Remote Sensing and GIS Approach
下载PDF
导出
摘要 Remote Sensing (RS) and geographic information system (GIS) are now very essential tools for efficient planning and management and handling a range of data simultaneously in a time- and cost-efficient manner for targeting of groundwater, which assists in measuring, monitoring, and conserving groundwater resources. Survey of India toposheets, LISS-III and CARTOSAT DEM satellite imageries are used to prepare various thematic layers viz., geology, slope, lineament, drainage, and geomorphology, and were transformed to raster data using feature to raster conversion tool in ArcGIS spatial analysis, then we reclassify each raster map using reclassify tools. By using weight overlay analysis, each weighted thematic layer is statistically computed to get the ground water potential zones. Then, five different groundwater potential zones were identified, namely “very good”, “good”, “moderate”, “poor”, and “very poor”. The villages under poor groundwater potential zone and the villages under very good groundwater potential zone are finding out. The above study has clearly demonstrated the capabilities of Remote Sensing and GIS in demarcation of the different groundwater potential zones in hard rock terrain. Remote Sensing (RS) and geographic information system (GIS) are now very essential tools for efficient planning and management and handling a range of data simultaneously in a time- and cost-efficient manner for targeting of groundwater, which assists in measuring, monitoring, and conserving groundwater resources. Survey of India toposheets, LISS-III and CARTOSAT DEM satellite imageries are used to prepare various thematic layers viz., geology, slope, lineament, drainage, and geomorphology, and were transformed to raster data using feature to raster conversion tool in ArcGIS spatial analysis, then we reclassify each raster map using reclassify tools. By using weight overlay analysis, each weighted thematic layer is statistically computed to get the ground water potential zones. Then, five different groundwater potential zones were identified, namely “very good”, “good”, “moderate”, “poor”, and “very poor”. The villages under poor groundwater potential zone and the villages under very good groundwater potential zone are finding out. The above study has clearly demonstrated the capabilities of Remote Sensing and GIS in demarcation of the different groundwater potential zones in hard rock terrain.
出处 《International Journal of Geosciences》 2017年第11期1361-1373,共13页 地球科学国际期刊(英文)
关键词 HYDROGEOMORPHOLOGY REMOTE SENSING GIS Hydrogeomorphology Remote Sensing GIS
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部