期刊文献+

Application of Principal Component Analysis, Cluster Analysis, Pollution Index and Geoaccumulation Index in Pollution Assessment with Heavy Metals from Gold Mining Operations, Tanzania

Application of Principal Component Analysis, Cluster Analysis, Pollution Index and Geoaccumulation Index in Pollution Assessment with Heavy Metals from Gold Mining Operations, Tanzania
下载PDF
导出
摘要 Gold mining is now widely acknowledged as one of the significant sources of soil pollution in developed countries. In developing countries, the sources and levels of soil contamination have not been thoroughly addressed. Thus, this study was intended to determine the source of soil pollution and the level of contamination in the active and closed gold mining areas. The research paper presents the pollution load of heavy metals (lead-Pb, chromium-Cr, cadmium-Cd, copper-Cu, arsenic-As, manganese-Mn, and nickel-Ni) in 90 soil samples collected from the studied sites. Multivariate statistical analysis, including Principal Component Analysis (PCA) and Cluster Analysis (CA), coupled with correlation coefficient analysis, was performed to determine the possible sources of pollution in the study areas. The results indicated that Pb, Cr, Cu and Mn come from different sources than Cd, As and Ni. The results obtained from the metal pollution assessment using the Pollution Index (PI) and the Geoaccumulation Index (Igeo) confirmed that soils in the mining areas were contaminated in the range from moderately through strongly to highly contaminated soils. This study verified that soil contamination in the gold mining areas results from natural and anthropogenic processes. The current study findings would enhance our knowledge regarding the soil contamination level in the mining areas and the source of contamination. It is recommended to use PCA, CA, PI and Igeo to assess and monitor the heavy metal contaminated soil in gold mining areas. Gold mining is now widely acknowledged as one of the significant sources of soil pollution in developed countries. In developing countries, the sources and levels of soil contamination have not been thoroughly addressed. Thus, this study was intended to determine the source of soil pollution and the level of contamination in the active and closed gold mining areas. The research paper presents the pollution load of heavy metals (lead-Pb, chromium-Cr, cadmium-Cd, copper-Cu, arsenic-As, manganese-Mn, and nickel-Ni) in 90 soil samples collected from the studied sites. Multivariate statistical analysis, including Principal Component Analysis (PCA) and Cluster Analysis (CA), coupled with correlation coefficient analysis, was performed to determine the possible sources of pollution in the study areas. The results indicated that Pb, Cr, Cu and Mn come from different sources than Cd, As and Ni. The results obtained from the metal pollution assessment using the Pollution Index (PI) and the Geoaccumulation Index (Igeo) confirmed that soils in the mining areas were contaminated in the range from moderately through strongly to highly contaminated soils. This study verified that soil contamination in the gold mining areas results from natural and anthropogenic processes. The current study findings would enhance our knowledge regarding the soil contamination level in the mining areas and the source of contamination. It is recommended to use PCA, CA, PI and Igeo to assess and monitor the heavy metal contaminated soil in gold mining areas.
作者 Caren Anatory Kahangwa Caren Anatory Kahangwa(National Environment Management Council, Dodoma, Tanzania)
出处 《Journal of Geoscience and Environment Protection》 2022年第4期303-317,共15页 地球科学和环境保护期刊(英文)
关键词 Heavy Metals Contamination Principal Component Analysis Cluster Analysis Pollution Index Geoaccumulation Index Heavy Metals Contamination Principal Component Analysis Cluster Analysis Pollution Index Geoaccumulation Index
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部