期刊文献+

Groundwater Vulnerability and Sensitivity Optimization Using Geographical Information System for Kano Metropolis, North-Western Nigeria

Groundwater Vulnerability and Sensitivity Optimization Using Geographical Information System for Kano Metropolis, North-Western Nigeria
下载PDF
导出
摘要 This paper developed an optimization technique for groundwater vulnerability in Kano Metropolis, North-Western Nigeria. A combination of DRASTIC is taken from initial letters of seven parameters namely depth to water table (D), net recharge (R), aquifer media (A), soil media (S), topography (T), impact of vadose zone (V) and hydraulic conductivity (C), while GOD also represents groundwater confinement (G), overlaying strata (O), depth of water (D) and multi-criteria evaluation (MCE) techniques were used in the optimization method by integrating other important and sensitive parameters for groundwater pollution, principally the anthropogenic point source pollution parameters (dump site, petroleum stations, automobile shops and under storage tanks). Geographic Information System was used to perform the sensitivity analysis (SA) using the single parameter and map removal sensitivity methods. Result of sensitivity optimization revealed the depth to groundwater (D), net recharge (N), impact of vadose zone (V) from DRASTIC model, and groundwater conferment (G) from GOD model having significant impact on the groundwater vulnerability, respectively. A combination of these four parameters was used to generate DNVG groundwater vulnerability for the area. This suggests that an integration of other point source pollution parameters can enhance the influence of DRASTIC and GOD model parameters on groundwater vulnerability condition. The paper recommends for the application of the optimization method used in this study in another area with similar geological and anthropogenic point source of pollution with a view to validating or improving on it. In this study, several input data, such as anthropogenic point sources of contamination, are added to the existing DRASTIC and GOD model parameters as part of a sensitivity analysis aiming to optimise the performance of the resultant models. This paper developed an optimization technique for groundwater vulnerability in Kano Metropolis, North-Western Nigeria. A combination of DRASTIC is taken from initial letters of seven parameters namely depth to water table (D), net recharge (R), aquifer media (A), soil media (S), topography (T), impact of vadose zone (V) and hydraulic conductivity (C), while GOD also represents groundwater confinement (G), overlaying strata (O), depth of water (D) and multi-criteria evaluation (MCE) techniques were used in the optimization method by integrating other important and sensitive parameters for groundwater pollution, principally the anthropogenic point source pollution parameters (dump site, petroleum stations, automobile shops and under storage tanks). Geographic Information System was used to perform the sensitivity analysis (SA) using the single parameter and map removal sensitivity methods. Result of sensitivity optimization revealed the depth to groundwater (D), net recharge (N), impact of vadose zone (V) from DRASTIC model, and groundwater conferment (G) from GOD model having significant impact on the groundwater vulnerability, respectively. A combination of these four parameters was used to generate DNVG groundwater vulnerability for the area. This suggests that an integration of other point source pollution parameters can enhance the influence of DRASTIC and GOD model parameters on groundwater vulnerability condition. The paper recommends for the application of the optimization method used in this study in another area with similar geological and anthropogenic point source of pollution with a view to validating or improving on it. In this study, several input data, such as anthropogenic point sources of contamination, are added to the existing DRASTIC and GOD model parameters as part of a sensitivity analysis aiming to optimise the performance of the resultant models.
作者 Zaharatu Mohammed Babika Abubakar Ibrahim Tukur Zaharatu Mohammed Babika;Abubakar Ibrahim Tukur(Deparrtment of Architecture and Civil Engineering, University of Bath, Bath, United Kingdom;Department of Geography, Kano University of Science and Technology, Kano, Nigeria)
出处 《Journal of Geoscience and Environment Protection》 2022年第4期202-226,共25页 地球科学和环境保护期刊(英文)
关键词 Groundwater Pollution Sensitivity MODELLING OPTIMIZATION Groundwater Pollution Sensitivity Modelling Optimization
  • 相关文献

参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部