期刊文献+

Glacier Mass-Balance Variation in China during the Past Half Century 被引量:1

Glacier Mass-Balance Variation in China during the Past Half Century
下载PDF
导出
摘要 The aim of this study is to investigate the impact of temperature trend on glacier-mass balance, snow density, snowmelt, snow depth and runoff by using observations of nine glacier stations that covered most of the China over the period of 1979-2013. Trend analysis showed an increasing trend of temperature on all of the selected stations. On an average, temperature was increasing at the rate of 0.46/10a. The increasing trend of temperature showed a negative relationship with annual glacier-mass balance on most of the stations and caused a decrease in annual balance. Results of Pearson’s correlation analysis showed a highly significant negative correlation between temperature and snow density (correlation coefficient (CC = -0.661 at 0.01 significance level). There was a significant positive correlation between temperature and snowmelt (CC = 0.532 at 0.01 significance level). There was a significant negative correlation between temperature and snow depth (correlation coefficient (CC = -0.342 at 0.05 significance level). Moreover, there was a significant positive correlation between temperature and runoff (CC = 0.586 at 0.01 significance level). Increasing trend of temperature caused an increasing trend of annual snowmelt and runoff anomaly% at the rate of 24.82/10a and 9.87/10a, respectively. On the other hand, a declining trend in annual snow density and snow depth anomaly% was found at a rate of -5.32/10a and -1.93/10a, respectively. We concluded that the snow density, snowmelt and runoff are significantly sensitive to temperature in China. This contribution has provided information for further understanding of glacier variation and its influencing factors. The aim of this study is to investigate the impact of temperature trend on glacier-mass balance, snow density, snowmelt, snow depth and runoff by using observations of nine glacier stations that covered most of the China over the period of 1979-2013. Trend analysis showed an increasing trend of temperature on all of the selected stations. On an average, temperature was increasing at the rate of 0.46/10a. The increasing trend of temperature showed a negative relationship with annual glacier-mass balance on most of the stations and caused a decrease in annual balance. Results of Pearson’s correlation analysis showed a highly significant negative correlation between temperature and snow density (correlation coefficient (CC = -0.661 at 0.01 significance level). There was a significant positive correlation between temperature and snowmelt (CC = 0.532 at 0.01 significance level). There was a significant negative correlation between temperature and snow depth (correlation coefficient (CC = -0.342 at 0.05 significance level). Moreover, there was a significant positive correlation between temperature and runoff (CC = 0.586 at 0.01 significance level). Increasing trend of temperature caused an increasing trend of annual snowmelt and runoff anomaly% at the rate of 24.82/10a and 9.87/10a, respectively. On the other hand, a declining trend in annual snow density and snow depth anomaly% was found at a rate of -5.32/10a and -1.93/10a, respectively. We concluded that the snow density, snowmelt and runoff are significantly sensitive to temperature in China. This contribution has provided information for further understanding of glacier variation and its influencing factors.
出处 《Journal of Geoscience and Environment Protection》 2018年第5期37-58,共22页 地球科学和环境保护期刊(英文)
关键词 GLACIER MASS-BALANCE SNOW Density SNOWMELT SNOW Depth RUNOFF Climate VARIATION Glacier Mass-Balance Snow Density Snowmelt Snow Depth Runoff Climate Variation
  • 相关文献

参考文献2

二级参考文献47

共引文献64

同被引文献24

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部