期刊文献+

Assessment of Future Climate Change Scenario in Halaba District, Southern Ethiopia

Assessment of Future Climate Change Scenario in Halaba District, Southern Ethiopia
下载PDF
导出
摘要 Climate change is one environmental threat that poses great challenges to the future development prospects of Ethiopia. The study used the statistically downscaled daily data in 30-years intervals from the second generation of the Earth System Model (CanESM2) under two Representative Concentration Pathways (RCPs): RCP 4.5 and RCP 8.5 for three future time slices;near-term (2010-2039), mid-century (2040-2069) and end-century (2071-2099) were generated. The observed data of maximum and minimum temperature and precipitation are a good simulation with the modeled data during the calibration and validation periods using the correlation coefficient (R<sup>2</sup>), the Nash-Sutcliffe efficiency (NSE), and the Root Mean Square Error (RMSE). The projected annual minimum and maximum temperatures are expected to increase by 0.091°C, 0.517°C, and 0.73°C and 0.072°C, 0.245°C, and 0.358°C in the 2020s, 2050s, and 2080s under the intermediate scenario, respectively. Under RCP8.5, the annual minimum and maximum temperatures are expected to increase by 0.192°C, 0.409°C, and 0.708°C, 0.402°C, 4.352°C, and 8.750°C in the 2020s, 2050s, and 2080s, respectively. Besides, the precipitation is expected to increase under intermediate and high emission scenarios by 1.314%, 7.643%, and 12.239%, and 1.269%, 10.316% and 26.298% in the 2020s, 2050s, and 2080s, respectively. Temperature and precipitation are projected to increase in total amounts under all-time slices and emissions pathways. In both emission scenarios, the greatest changes in maximum temperature, minimum temperature, and precipitation are predicted by the end of the century. This implies climate smart actions in development policies and activities need to consider locally downscale expected climatic changes. Climate change is one environmental threat that poses great challenges to the future development prospects of Ethiopia. The study used the statistically downscaled daily data in 30-years intervals from the second generation of the Earth System Model (CanESM2) under two Representative Concentration Pathways (RCPs): RCP 4.5 and RCP 8.5 for three future time slices;near-term (2010-2039), mid-century (2040-2069) and end-century (2071-2099) were generated. The observed data of maximum and minimum temperature and precipitation are a good simulation with the modeled data during the calibration and validation periods using the correlation coefficient (R<sup>2</sup>), the Nash-Sutcliffe efficiency (NSE), and the Root Mean Square Error (RMSE). The projected annual minimum and maximum temperatures are expected to increase by 0.091°C, 0.517°C, and 0.73°C and 0.072°C, 0.245°C, and 0.358°C in the 2020s, 2050s, and 2080s under the intermediate scenario, respectively. Under RCP8.5, the annual minimum and maximum temperatures are expected to increase by 0.192°C, 0.409°C, and 0.708°C, 0.402°C, 4.352°C, and 8.750°C in the 2020s, 2050s, and 2080s, respectively. Besides, the precipitation is expected to increase under intermediate and high emission scenarios by 1.314%, 7.643%, and 12.239%, and 1.269%, 10.316% and 26.298% in the 2020s, 2050s, and 2080s, respectively. Temperature and precipitation are projected to increase in total amounts under all-time slices and emissions pathways. In both emission scenarios, the greatest changes in maximum temperature, minimum temperature, and precipitation are predicted by the end of the century. This implies climate smart actions in development policies and activities need to consider locally downscale expected climatic changes.
作者 Tesemash Abebe Leta Bekele Misrak Tamire Hessebo Tesemash Abebe;Leta Bekele;Misrak Tamire Hessebo(Department of Climate Science, Ethiopian Environment and Forest Research Institute, Addis Ababa, Ethiopia;Department of Meteorological Data and Climatology, Ethiopia Meteorology Institute, Addis Ababa, Ethiopia;Department of Geography and Environmental Studies, Dilla University, Dilla, Ethiopia)
出处 《Atmospheric and Climate Sciences》 2022年第2期283-296,共14页 大气和气候科学(英文)
关键词 Statistical Downscaling Model RCP Scenarios Climate Change Statistical Downscaling Model RCP Scenarios Climate Change
  • 相关文献

参考文献3

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部