期刊文献+

Photoluminescence Response of HfO<sub>2</sub>:Eu<sup>3+</sup>Obtained by Hydrothermal Route

Photoluminescence Response of HfO<sub>2</sub>:Eu<sup>3+</sup>Obtained by Hydrothermal Route
下载PDF
导出
摘要 In this work, the synthesis and photoluminescence response of HfO2 doped with Eu3+ (HfO2:Eu3+) are reported. The synthesis was carried out by the hydrothermal route of HfCl4 and EuCl3?.6H2O with NH4OH dissolved in deionized water. To perform the hydrolysis, the precursors were subjected to hydrothermal treatment at 120°C, under autogenously pressure at reaction times of 24, 40, 52 and 72 hours. The synthesized nanoparticles were characterized by mean of X- ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), and energy dispersive spectroscopy (EDS). Samples excited with 395 nm radiation show photoluminescence emission lines corresponding to the electronic transitions 5D0 → 7FJ (J = 0 → 4), characteristics of the Eu3+ ion. The photoluminescence emission intensity increases with the increasing of the reaction time, reaching a maximum at 72 hours. The excitation band peaked at 395 nm, makes this material an excellent candidate for applications in solid state white lamps. In this work, the synthesis and photoluminescence response of HfO2 doped with Eu3+ (HfO2:Eu3+) are reported. The synthesis was carried out by the hydrothermal route of HfCl4 and EuCl3?.6H2O with NH4OH dissolved in deionized water. To perform the hydrolysis, the precursors were subjected to hydrothermal treatment at 120°C, under autogenously pressure at reaction times of 24, 40, 52 and 72 hours. The synthesized nanoparticles were characterized by mean of X- ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), and energy dispersive spectroscopy (EDS). Samples excited with 395 nm radiation show photoluminescence emission lines corresponding to the electronic transitions 5D0 → 7FJ (J = 0 → 4), characteristics of the Eu3+ ion. The photoluminescence emission intensity increases with the increasing of the reaction time, reaching a maximum at 72 hours. The excitation band peaked at 395 nm, makes this material an excellent candidate for applications in solid state white lamps.
出处 《Open Journal of Synthesis Theory and Applications》 2013年第2期73-77,共5页 合成理论与应用(英文)
关键词 PHOTOLUMINESCENCE HAFNIUM Oxide Hydrothermal Method Earth Rare TRIVALENT Ions Photoluminescence Hafnium Oxide Hydrothermal Method Earth Rare Trivalent Ions
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部