摘要
We consider the modeling and simulation by means of multiwavelets on many patches. Our focus is on molecular surfaces which are represented in the form of Solvent Excluded Surfaces that are featured by smooth blendings between the constituting atoms. The wavelet bases are constructed on the unit square which maps bijectively onto the patches embedded in the space. The cavity which designates the surface bounding a molecular model is acquired from the nuclei coordinates and the Van-der-Waals radii. We use multi-wavelets for which the wavelet basis functions are organized hierarchically on several levels. Our assembly of the linear system is accomplished by using a hierarchical tree which enables the treatment of large molecules admitting thousands of patches. Along with the patch construction, some wavelet simulation outcomes which are applied to realistic patches are reported.
We consider the modeling and simulation by means of multiwavelets on many patches. Our focus is on molecular surfaces which are represented in the form of Solvent Excluded Surfaces that are featured by smooth blendings between the constituting atoms. The wavelet bases are constructed on the unit square which maps bijectively onto the patches embedded in the space. The cavity which designates the surface bounding a molecular model is acquired from the nuclei coordinates and the Van-der-Waals radii. We use multi-wavelets for which the wavelet basis functions are organized hierarchically on several levels. Our assembly of the linear system is accomplished by using a hierarchical tree which enables the treatment of large molecules admitting thousands of patches. Along with the patch construction, some wavelet simulation outcomes which are applied to realistic patches are reported.
作者
Maharavo Randrianarivony
Maharavo Randrianarivony(Simulation Unit, Personal Simulation and Design, Sankt Augustin, Germany)