摘要
In this work, the deposition process features of a copper coating on stainless steel substrate, using the pulse vacuum arc spraying method were researched. A continuous layer of copper was deposited on a stainless steel substrate, and a high degree of coating adhesion to the substrate was demonstrated. The thickness of coating using application time was calculated, and the surface unevenness was estimated. Inside the coating layer substrate material elements were observed, that could appear as a result of simultaneously plasma spraying on the surface of the substrate. The feature of this method was discovered, that surface plasma plays a significant role in the deposition process. Finally, it was shown that the device with a pulsed arc could effectively be used in industry, since it is possible to change the layer thickness in the range of hundreds of microns by varying the deposition time.
In this work, the deposition process features of a copper coating on stainless steel substrate, using the pulse vacuum arc spraying method were researched. A continuous layer of copper was deposited on a stainless steel substrate, and a high degree of coating adhesion to the substrate was demonstrated. The thickness of coating using application time was calculated, and the surface unevenness was estimated. Inside the coating layer substrate material elements were observed, that could appear as a result of simultaneously plasma spraying on the surface of the substrate. The feature of this method was discovered, that surface plasma plays a significant role in the deposition process. Finally, it was shown that the device with a pulsed arc could effectively be used in industry, since it is possible to change the layer thickness in the range of hundreds of microns by varying the deposition time.