期刊文献+

Surface Modification of Parts Material Shape Memory TiNiCo with a View to Providing a Functional and Mechanical Property as a Factor in Resource

Surface Modification of Parts Material Shape Memory TiNiCo with a View to Providing a Functional and Mechanical Property as a Factor in Resource
下载PDF
导出
摘要 The paper presents a complex method of forming the surface-modified layers of materials with shape memory effect, including high-speed flame spraying of powders based on TiNiCo;subsequent thermal and thermomechanical treatment allows the formation of surface layers of nano-sized state that have a high level of functional, mechanical and performance properties;it is shown that the complex processing with a layer of TiNiCo allows a reduction of the porosity of the coatings and increases the strength of the coating’s adhesion to the substrate. It is found that, after treatment with high-speed flame spraying powder shape memory TiNiCo, steel has an increase in cycle life by 30% - 40% in a cycle fatigue and 3 - 3.5 times durability. Based on comprehensive research into the metallophysical surface-modified layer, new information is obtained about the nanoscale composition. The paper presents a complex method of forming the surface-modified layers of materials with shape memory effect, including high-speed flame spraying of powders based on TiNiCo;subsequent thermal and thermomechanical treatment allows the formation of surface layers of nano-sized state that have a high level of functional, mechanical and performance properties;it is shown that the complex processing with a layer of TiNiCo allows a reduction of the porosity of the coatings and increases the strength of the coating’s adhesion to the substrate. It is found that, after treatment with high-speed flame spraying powder shape memory TiNiCo, steel has an increase in cycle life by 30% - 40% in a cycle fatigue and 3 - 3.5 times durability. Based on comprehensive research into the metallophysical surface-modified layer, new information is obtained about the nanoscale composition.
出处 《Journal of Surface Engineered Materials and Advanced Technology》 2014年第6期348-358,共11页 表面工程材料与先进技术期刊(英文)
关键词 NANOSIZED Structure Shape Memory Effect High-Speed FLAME SPRAYING Surface Plastic Deformation Wear Resistance Mechanical Fatigue Nanosized Structure Shape Memory Effect High-Speed Flame Spraying Surface Plastic Deformation Wear Resistance Mechanical Fatigue
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部