摘要
The cartography and characterization of an alluvial clay deposit from Ebebda (Central region of Cameroon) were carried out in order to assess its suitability for the production of fired clay bricks. The clayey area investigated is ~ 50,000 m2 with an average thickness of the exploitable layer of 2.2 m, suggesting a deposit of about ~2.2 × 105 tonnes of clay. Mineralogy, physico-chemical and thermal analyses as well as firing properties were performed on representative clay samples. Kaolinite and quartz are the major minerals associated to illite. Upon heating to 900℃ - 1200℃, the linear shrinkage varies from 1.5% to 15%, the water absorption from 1.5% to 24% and the bending strength from 2 to 12 MPa. The admixture of lateritic clays (widely available) at 50%, 60%, 70% and 80% allow to decrease the shrinkage and bending strength, and to increase the water absorption. Overall, properties were satisfying the requirement for fired brick with 70% of laterite in the mixture.
The cartography and characterization of an alluvial clay deposit from Ebebda (Central region of Cameroon) were carried out in order to assess its suitability for the production of fired clay bricks. The clayey area investigated is ~ 50,000 m2 with an average thickness of the exploitable layer of 2.2 m, suggesting a deposit of about ~2.2 × 105 tonnes of clay. Mineralogy, physico-chemical and thermal analyses as well as firing properties were performed on representative clay samples. Kaolinite and quartz are the major minerals associated to illite. Upon heating to 900℃ - 1200℃, the linear shrinkage varies from 1.5% to 15%, the water absorption from 1.5% to 24% and the bending strength from 2 to 12 MPa. The admixture of lateritic clays (widely available) at 50%, 60%, 70% and 80% allow to decrease the shrinkage and bending strength, and to increase the water absorption. Overall, properties were satisfying the requirement for fired brick with 70% of laterite in the mixture.