摘要
This work aims at the development of carbon steel AISI 1536 through the microalloying addition of boron. Three grades of this steel with different content of boron up to 0.0055% were melted in 100 kg induction furnace. The pro- duced steels were hardened at 960°C for 30 min., followed by tempering at different temperatures and durations. All hardened steels have martensite phase as illustrated with microstructures and X-ray diffraction. Hardness of all tem- pered steel samples was measured to calculate the activation energies of carbon migration through martensite phase. The results indicated that the activation energies of carbon migration through martensite phase decreases with the in- crease of boron content due to its positive effect on the crystallinity of martensite phase. Also, the results showed that the addition of boron up to 0.0023% can improve the steel properties at the lowest temperature and tempered time.
This work aims at the development of carbon steel AISI 1536 through the microalloying addition of boron. Three grades of this steel with different content of boron up to 0.0055% were melted in 100 kg induction furnace. The pro- duced steels were hardened at 960°C for 30 min., followed by tempering at different temperatures and durations. All hardened steels have martensite phase as illustrated with microstructures and X-ray diffraction. Hardness of all tem- pered steel samples was measured to calculate the activation energies of carbon migration through martensite phase. The results indicated that the activation energies of carbon migration through martensite phase decreases with the in- crease of boron content due to its positive effect on the crystallinity of martensite phase. Also, the results showed that the addition of boron up to 0.0023% can improve the steel properties at the lowest temperature and tempered time.