期刊文献+

Synergism of Titanium in MFI Zeolite to Acidity with Its Appliance to N-Hexane Catalytic Cracking Reaction

Synergism of Titanium in MFI Zeolite to Acidity with Its Appliance to N-Hexane Catalytic Cracking Reaction
下载PDF
导出
摘要 Catalytic cracking of naphtha is now a process of huge development potential to produce light olefins, which are important basic raw materials used in various industries, but current industrial catalysts like ZSM-5 zeolites suffer from low selectivity and high energy consumption. Here, Ti/Al-containing nanosize MFI-structure zeolites in-situly synthesized through one-pot method were applied to the catalytic cracking using n-hexane as the model reactant. The maximum mass yield of combined light olefins reaches 49.2% with 99% conversion at 600<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#176;</span>C and 1 atm. Multiple characterizations are used to identify the Ti-related active species and their effect on the performance. It was found that a higher proportion of LAS caused by Ti was beneficial to the activation of reactant, and the slightly increased amount of BAS leaded to more alkanes converting into light olefins. This understanding may open new opportunities for design and modification of catalytic cracking catalysts. Catalytic cracking of naphtha is now a process of huge development potential to produce light olefins, which are important basic raw materials used in various industries, but current industrial catalysts like ZSM-5 zeolites suffer from low selectivity and high energy consumption. Here, Ti/Al-containing nanosize MFI-structure zeolites in-situly synthesized through one-pot method were applied to the catalytic cracking using n-hexane as the model reactant. The maximum mass yield of combined light olefins reaches 49.2% with 99% conversion at 600<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#176;</span>C and 1 atm. Multiple characterizations are used to identify the Ti-related active species and their effect on the performance. It was found that a higher proportion of LAS caused by Ti was beneficial to the activation of reactant, and the slightly increased amount of BAS leaded to more alkanes converting into light olefins. This understanding may open new opportunities for design and modification of catalytic cracking catalysts.
作者 Yuhao Cen Fan Yang Xuedong Zhu Kake Zhu Yuhao Cen;Fan Yang;Xuedong Zhu;Kake Zhu(Engineering Research Center of Large-Scale Reactor Engineering and Technology, Ministry of Education, East China University of Science and Technology, Shanghai, China)
出处 《Journal of Materials Science and Chemical Engineering》 2021年第7期10-27,共18页 材料科学与化学工程(英文)
关键词 Catalytic Cracking Light Olefin MFI Zeolite TITANIUM Catalytic Cracking Light Olefin MFI Zeolite Titanium
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部