摘要
Chitosan synthesized locally with a degree of deacetylation 71% and chitosan with a degree of deacetylation 68% from Sigma Aldrich were used to investigate adsorption of Cu2+ ion in aqueous solution. The results obtained from equilibrium isotherm adsorption studies of Cu2+ ion were an-alyzed in five adsorption models namely: Langmuir, Freundlich, Temkin, Elovich and Dubin- Ra-dushkevich. The isotherms equation was indicated to be well fitted to Langmuir, Freundlich, Temkin and Elovich under the concentration range studied. The kinetic parameters were evaluated utilizing the pseudo-first-order and pseudo-second-order equations, and the adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The FTIR studies revealed that the greater sorption of heavy metal was attributed to the large number of primary amine groups available on the surfaces of the chitosan and the abundant carboxyl groups on chitosan.
Chitosan synthesized locally with a degree of deacetylation 71% and chitosan with a degree of deacetylation 68% from Sigma Aldrich were used to investigate adsorption of Cu2+ ion in aqueous solution. The results obtained from equilibrium isotherm adsorption studies of Cu2+ ion were an-alyzed in five adsorption models namely: Langmuir, Freundlich, Temkin, Elovich and Dubin- Ra-dushkevich. The isotherms equation was indicated to be well fitted to Langmuir, Freundlich, Temkin and Elovich under the concentration range studied. The kinetic parameters were evaluated utilizing the pseudo-first-order and pseudo-second-order equations, and the adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The FTIR studies revealed that the greater sorption of heavy metal was attributed to the large number of primary amine groups available on the surfaces of the chitosan and the abundant carboxyl groups on chitosan.