期刊文献+

Advances in understanding of the primary reactions of protochlorophyll(ide) photoreduction in cells and model systems

Advances in understanding of the primary reactions of protochlorophyll(ide) photoreduction in cells and model systems
下载PDF
导出
摘要 The key step in chlorophyll biosynthesis is photoreduction of its immediate precursor, protochlorophyllide. This reaction is catalyzed by a photoenzyme, protochlorophyllide oxidoreductase (POR) and consists in the attachment of two hydrogen atoms in positions C17 and C18 of the tetrapyrrole molecule of protochlorophyllide;the double bond is replaced with the single bond. Two hydrogen donors involved in protochloro-phyllide photoreduction are NADPH [1,2] and a conserved tyrosine residue Tyr193 of the photoenzyme POR [3]. The structure of active pigment-enzyme complex (Pchlide-POR-NADPH) ensures a favorable steric conditions for the transfer of hydride ion and proton. This review does not examine the ternary complex structure, but concentrates upon the mechanisms of primary photophysical and photochemical reactions during formation of chlorophyllide from protochlorophyllide in living objects (etiolated leaves and leaf homogenates) and model systems. The key step in chlorophyll biosynthesis is photoreduction of its immediate precursor, protochlorophyllide. This reaction is catalyzed by a photoenzyme, protochlorophyllide oxidoreductase (POR) and consists in the attachment of two hydrogen atoms in positions C17 and C18 of the tetrapyrrole molecule of protochlorophyllide;the double bond is replaced with the single bond. Two hydrogen donors involved in protochloro-phyllide photoreduction are NADPH [1,2] and a conserved tyrosine residue Tyr193 of the photoenzyme POR [3]. The structure of active pigment-enzyme complex (Pchlide-POR-NADPH) ensures a favorable steric conditions for the transfer of hydride ion and proton. This review does not examine the ternary complex structure, but concentrates upon the mechanisms of primary photophysical and photochemical reactions during formation of chlorophyllide from protochlorophyllide in living objects (etiolated leaves and leaf homogenates) and model systems.
机构地区 不详
出处 《Journal of Biophysical Chemistry》 2011年第1期1-9,共9页 生物物理化学(英文)
关键词 PROTOCHLOROPHYLLIDE CHLOROPHYLLIDE PHOTOREDUCTION FLUORESCENCE Spectroscopy Protochlorophyllide Chlorophyllide Photoreduction Fluorescence Spectroscopy
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部