期刊文献+

Study of Photoinduced Interaction between Calf Thymus-DNA and Bovine Serum Albumin Protein with H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>Nanotubes 被引量:1

Study of Photoinduced Interaction between Calf Thymus-DNA and Bovine Serum Albumin Protein with H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>Nanotubes
下载PDF
导出
摘要 Hydrogen titanate nanotubes were synthesized by hydrothermal process using 10 M NaOH and TiO2 anatase powder. The material synthesized was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to ensure the structural and morphological characteristics. The interaction of calf thymus DNA (CT-DNA) and bovine serum albumin protein with suspended aqueous solution of titanate nanotubes was investigated using UV absorption spectroscopy and the apparent association constant was found to be, Kb= 1.68 × 104 M-1 and Kap=5.41 × 103 M-1 for DNA and BSA respectively. Addition of the titanate nano material resulted quenching of fluorescence spectra of ethidium bromide-DNA in tris HCl buffer solution and that of aqueous protein solution. The apparent binding constant (Ksv= 5.46 × 104M-1 for DNA binding and Ksv = 6.063 × 103M-1 for protein binding) was deduced from relevant fluorescence quenching data using Stern-Volmer equation. Hydrogen titanate nanotubes were synthesized by hydrothermal process using 10 M NaOH and TiO2 anatase powder. The material synthesized was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to ensure the structural and morphological characteristics. The interaction of calf thymus DNA (CT-DNA) and bovine serum albumin protein with suspended aqueous solution of titanate nanotubes was investigated using UV absorption spectroscopy and the apparent association constant was found to be, Kb= 1.68 × 104 M-1 and Kap=5.41 × 103 M-1 for DNA and BSA respectively. Addition of the titanate nano material resulted quenching of fluorescence spectra of ethidium bromide-DNA in tris HCl buffer solution and that of aqueous protein solution. The apparent binding constant (Ksv= 5.46 × 104M-1 for DNA binding and Ksv = 6.063 × 103M-1 for protein binding) was deduced from relevant fluorescence quenching data using Stern-Volmer equation.
出处 《Journal of Biomaterials and Nanobiotechnology》 2012年第4期462-468,共7页 生物材料与纳米技术(英文)
关键词 PHOTOINDUCED INTERACTION NANOTUBES Hydrothermal Process Photoinduced Interaction Nanotubes Hydrothermal Process
  • 相关文献

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部