期刊文献+

Mechanical and Dielectric Properties of InTe Crystals

Mechanical and Dielectric Properties of InTe Crystals
下载PDF
导出
摘要 The mechanical properties of indium telluride (InTe) crystals grown by the Bridgman technique were investigated at room temperature using a Vickers hardness tester. The microhardness is observed to vary nonlinearly with the applied load, 10 - 100 g. The cleaved ingots are found to have high value of microhardness (222.44 kg/mm2 at a load of25 g), which reflects an appreciable degree of strength due to their covalent bonding and homogeneity. The studies revealed that the dislocations in the grown crystals offered a resistance to fresh dislocations due to interaction. At higher loads, plastic deformation induces by slip, exhibiting a decrease in hardness from the peak value. The dielectric constant and dielectric loss of indium telluride crystals were evaluated in the frequency range, 1 kHz - 1 MHz for different temperatures (35oC - 140oC). The frequency dependence of AC conductivity was analyzed as a function of temperature. The effect of temperature and frequency on the dielectric response of InTe crystals has been assessed on their cleavage faces and the obtained results are discussed. The mechanical properties of indium telluride (InTe) crystals grown by the Bridgman technique were investigated at room temperature using a Vickers hardness tester. The microhardness is observed to vary nonlinearly with the applied load, 10 - 100 g. The cleaved ingots are found to have high value of microhardness (222.44 kg/mm2 at a load of25 g), which reflects an appreciable degree of strength due to their covalent bonding and homogeneity. The studies revealed that the dislocations in the grown crystals offered a resistance to fresh dislocations due to interaction. At higher loads, plastic deformation induces by slip, exhibiting a decrease in hardness from the peak value. The dielectric constant and dielectric loss of indium telluride crystals were evaluated in the frequency range, 1 kHz - 1 MHz for different temperatures (35oC - 140oC). The frequency dependence of AC conductivity was analyzed as a function of temperature. The effect of temperature and frequency on the dielectric response of InTe crystals has been assessed on their cleavage faces and the obtained results are discussed.
出处 《Crystal Structure Theory and Applications》 2012年第3期79-83,共5页 晶体结构理论与应用(英文)
关键词 INDIUM TELLURIDE BRIDGMAN Technique MICROHARDNESS DIELECTRIC Constant DIELECTRIC Loss AC CONDUCTIVITY Indium Telluride Bridgman Technique Microhardness Dielectric Constant Dielectric Loss AC Conductivity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部