期刊文献+

Molecular Probes in Tandem Electrospray Ionization Mass Spectrometry: Application to Tracing Chemical Changes of Specific Phospholipid Molecular Species

Molecular Probes in Tandem Electrospray Ionization Mass Spectrometry: Application to Tracing Chemical Changes of Specific Phospholipid Molecular Species
下载PDF
导出
摘要 New ionization and detection techniques in mass spectrometry have been successfully applied for efficient analyses of complex biological systems. It is, however, still difficult to trace structural changes of a specific molecular species in such systems. In the present study, a molecular probe strategy in combination with tandem electrospray ionization mass spectrometry has been examined using synthetic deuterium-labeled phosphatidylcholine hydroperoxide (PC-OOH/D3) and ethyl-labeled phosphatidylcholine having docosahexaenoic acid side chain (DHA-PC/Et). Administration of a mixture of PC-OOH/D3 and DHA-PC/Et to human blood and human skin surface, followed by extraction and analysis with collision-induced tandem electrospray ionization mass spectrometry demonstrated that metabolites of both molecular probes can be detected simultaneously with strict selectivity. The present method is also found to be useful in tracing chemical changes of the unstable docosahexaenoyl group on the surface of processed fish. The activity of phospholipase A2 can also be assessed using a phospholipid molecular probe with a linoleoyl and a deuteriomethyl group via selective detection of the lyso-phospholipid product by mass spectrometry. The advantage of the present method is that no chromatographic separation is required and analysis can be performed under strictly the same condition for different molecular probes, affording multiple data by one experiment. The present strategy may be useful for tracing time-dependent phenomena in dynamic phospholipid biochemistry, and can be widely used for any biological and food systems. New ionization and detection techniques in mass spectrometry have been successfully applied for efficient analyses of complex biological systems. It is, however, still difficult to trace structural changes of a specific molecular species in such systems. In the present study, a molecular probe strategy in combination with tandem electrospray ionization mass spectrometry has been examined using synthetic deuterium-labeled phosphatidylcholine hydroperoxide (PC-OOH/D3) and ethyl-labeled phosphatidylcholine having docosahexaenoic acid side chain (DHA-PC/Et). Administration of a mixture of PC-OOH/D3 and DHA-PC/Et to human blood and human skin surface, followed by extraction and analysis with collision-induced tandem electrospray ionization mass spectrometry demonstrated that metabolites of both molecular probes can be detected simultaneously with strict selectivity. The present method is also found to be useful in tracing chemical changes of the unstable docosahexaenoyl group on the surface of processed fish. The activity of phospholipase A2 can also be assessed using a phospholipid molecular probe with a linoleoyl and a deuteriomethyl group via selective detection of the lyso-phospholipid product by mass spectrometry. The advantage of the present method is that no chromatographic separation is required and analysis can be performed under strictly the same condition for different molecular probes, affording multiple data by one experiment. The present strategy may be useful for tracing time-dependent phenomena in dynamic phospholipid biochemistry, and can be widely used for any biological and food systems.
出处 《American Journal of Analytical Chemistry》 2013年第10期16-26,共11页 美国分析化学(英文)
关键词 Molecular Probe Stable ISOTOPE Mass Spectrometry ELECTROSPRAY Ionization LIPID PEROXIDATION LIPID Oxidation Skin Surface Molecular Probe Stable Isotope Mass Spectrometry Electrospray Ionization Lipid Peroxidation Lipid Oxidation Skin Surface
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部