摘要
A mathematical model of the oscillatory regimes of CO oxidation over plantinum-group metal catalysts are discussed. The model is based on nonstationary diffusion equation containing a nonlinear term related to Michaelis-Menten kinetics of the enzymatic reaction. This paper presents the analytical and numerical solution of the system of non-linear differential equations. Here the Homotopy perturbation method (HPM) is used to find out the analytical expressions of the concentration of CO molecules, O atom and oxide oxygen respectively. A comparison of the analytical approximation and numerical simulation is also presented. A good agreement between theoretical and numerical results is observed.
A mathematical model of the oscillatory regimes of CO oxidation over plantinum-group metal catalysts are discussed. The model is based on nonstationary diffusion equation containing a nonlinear term related to Michaelis-Menten kinetics of the enzymatic reaction. This paper presents the analytical and numerical solution of the system of non-linear differential equations. Here the Homotopy perturbation method (HPM) is used to find out the analytical expressions of the concentration of CO molecules, O atom and oxide oxygen respectively. A comparison of the analytical approximation and numerical simulation is also presented. A good agreement between theoretical and numerical results is observed.