摘要
Because of high heterogeneity, a further classification should be made for diagnosis and treatment in gastric cancer. Biomarkers selected in subtypes are important for precision medicine. Based on gene expression level, we constructed genome-wide co-expression networks for invasive, proliferative and metabolic subtype in gastric cancer respectively. The hierarchical clustering was used to get sub-networks, and hub gene sets of subtypes were got by analysis in sub-networks. Unique differential expression genes as candidate targeted genes in subtype were gained by a comparative analysis between subtypes. These genes may be helpful for improving diagnosis and therapy methods and developing new drug in gastric cancer.
Because of high heterogeneity, a further classification should be made for diagnosis and treatment in gastric cancer. Biomarkers selected in subtypes are important for precision medicine. Based on gene expression level, we constructed genome-wide co-expression networks for invasive, proliferative and metabolic subtype in gastric cancer respectively. The hierarchical clustering was used to get sub-networks, and hub gene sets of subtypes were got by analysis in sub-networks. Unique differential expression genes as candidate targeted genes in subtype were gained by a comparative analysis between subtypes. These genes may be helpful for improving diagnosis and therapy methods and developing new drug in gastric cancer.