期刊文献+

Different Doses of the Enhanced UV-B Radiation Effects on Wheat Somatic Cell Division

Different Doses of the Enhanced UV-B Radiation Effects on Wheat Somatic Cell Division
下载PDF
导出
摘要 Being sessile, plants are continuously exposed to DNA-damaging agents presenting in the environment such as ultraviolet (UV). Sunlight acts as an energy source for photosynthetic plants;hence, avoidance of UV radiations (namely, UV-A, 315 - 400 nm;UV-B, 280 - 315 nm;and UV-C, 1 group: 4.05 kJ&#8226m-2&#8226d-1, B2 group: 10.08 kJ&#8226m-2&#8226d-1, B3 group: 7.05 kJ&#8226m-2&#8226d-1, B4 group: 23.02 kJ&#8226m-2&#8226d-1) treatment wheat, then, explored on the growth of wheat root and wheat root tip cell of chromosome aberration effect. In wheat, root-tip cells were observed with confocal laser scanning microscopy (CLSM), the results showed that low doses of B1 group (4.05 kJ&#8226m-2&#8226d-1) promoted the growth of wheat root and cell mitosis frequency. But high dose of B2 group (10.08 kJ&#8226m-2&#8226d-1), B3 group (17.05 kJ&#8226m-2&#8226d-1), B4 group (23.02 kJ&#8226m-2&#8226d-1) inhibited the growth of wheat root tip, and made crooked growth of wheat root, and inhibited the wheat root tip cell mitotic frequency and processed that induce root tip cells of wheat produce all kinds of aberration of chromosome in the interphase containing “multiple nucleoli nuclei”, “incomplete nuclei”, “long round nuclei”, “bean sprouts nucleus”. In mitosis M period contains “dissociative chromosome”, “chromosome bridge”, “adhesion chromosome”, “multi-bundle divide”, “nuclear anomalies”. After, high doses of enhanced UV-B radiation treatment, most of the cell cycle anomaly concentrated in mitosis interphase. In mitosis M period, with UV-B radiation dose enhanced chromosome aberration rate was on the rise and the aberration types also increasing. Being sessile, plants are continuously exposed to DNA-damaging agents presenting in the environment such as ultraviolet (UV). Sunlight acts as an energy source for photosynthetic plants;hence, avoidance of UV radiations (namely, UV-A, 315 - 400 nm;UV-B, 280 - 315 nm;and UV-C, 1 group: 4.05 kJ&#8226m-2&#8226d-1, B2 group: 10.08 kJ&#8226m-2&#8226d-1, B3 group: 7.05 kJ&#8226m-2&#8226d-1, B4 group: 23.02 kJ&#8226m-2&#8226d-1) treatment wheat, then, explored on the growth of wheat root and wheat root tip cell of chromosome aberration effect. In wheat, root-tip cells were observed with confocal laser scanning microscopy (CLSM), the results showed that low doses of B1 group (4.05 kJ&#8226m-2&#8226d-1) promoted the growth of wheat root and cell mitosis frequency. But high dose of B2 group (10.08 kJ&#8226m-2&#8226d-1), B3 group (17.05 kJ&#8226m-2&#8226d-1), B4 group (23.02 kJ&#8226m-2&#8226d-1) inhibited the growth of wheat root tip, and made crooked growth of wheat root, and inhibited the wheat root tip cell mitotic frequency and processed that induce root tip cells of wheat produce all kinds of aberration of chromosome in the interphase containing “multiple nucleoli nuclei”, “incomplete nuclei”, “long round nuclei”, “bean sprouts nucleus”. In mitosis M period contains “dissociative chromosome”, “chromosome bridge”, “adhesion chromosome”, “multi-bundle divide”, “nuclear anomalies”. After, high doses of enhanced UV-B radiation treatment, most of the cell cycle anomaly concentrated in mitosis interphase. In mitosis M period, with UV-B radiation dose enhanced chromosome aberration rate was on the rise and the aberration types also increasing.
出处 《CellBio》 2015年第2期30-36,共7页 细胞生物学(英文)
关键词 WHEAT Enhanced UV-B Radiation CHROMOSOME ABERRATION CONFOCAL Laser Scanning Microscopy (CLSM) Wheat Enhanced UV-B Radiation Chromosome Aberration Confocal Laser Scanning Microscopy (CLSM)
  • 相关文献

参考文献5

二级参考文献39

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部