期刊文献+

Bioherbicidal Efficacy of a Myrothecium verrucaria-Sector on Several Plant Species 被引量:1

Bioherbicidal Efficacy of a Myrothecium verrucaria-Sector on Several Plant Species
下载PDF
导出
摘要 Comparative studies were conducted on mycelial preparations of the bioherbicide, Myrothecium verrucaria (MV) strain IMI 361690 and a recently discovered sector (MV-Sector BSH) of this fungus. The whitish sector was discovered, isolated, grown in pure culture on PDA and found to be a stable, non-spore producing mutant when cultured over several months under conditions that cause circadian sporulation during growth of its MV parent. Application of MV and MV-Sector BSH mycelial preparations to intact plants (hemp sesbania and sicklepod) and leaf discs (kudzu and glyphosate-resistant Palmer amaranth) showed that the sector efficacy was generally equal to, or slightly lower than MV. Bioassays of MV and this sector on seed germination and early growth of sicklepod and hemp sesbania seeds demonstrated that hemp sesbania seeds were slightly more sensitive to the fungus than sicklepod seeds and that the sector bioherbicidal activity was slightly less than that of MV. SDS-PAGE protein profiles of cellular extracts of MV and the sector and their respective culture supernatants showed several differences with respect to quantity and number of certain protein bands. Overall results showed that the isolate was a non-spore producing mutant with phytotoxicity to several weeds (including weeds tolerant or resistant to glyphosate), and that the phytotoxic effects were generally equivalent to those caused by MV treatment. Results of this first report of a non-sporulating MV mutant that suggest additional studies on protein analysis, and an extended weed host range under greenhouse and field conditions are needed in order to further evaluate its possible bioherbicidal potential. Comparative studies were conducted on mycelial preparations of the bioherbicide, Myrothecium verrucaria (MV) strain IMI 361690 and a recently discovered sector (MV-Sector BSH) of this fungus. The whitish sector was discovered, isolated, grown in pure culture on PDA and found to be a stable, non-spore producing mutant when cultured over several months under conditions that cause circadian sporulation during growth of its MV parent. Application of MV and MV-Sector BSH mycelial preparations to intact plants (hemp sesbania and sicklepod) and leaf discs (kudzu and glyphosate-resistant Palmer amaranth) showed that the sector efficacy was generally equal to, or slightly lower than MV. Bioassays of MV and this sector on seed germination and early growth of sicklepod and hemp sesbania seeds demonstrated that hemp sesbania seeds were slightly more sensitive to the fungus than sicklepod seeds and that the sector bioherbicidal activity was slightly less than that of MV. SDS-PAGE protein profiles of cellular extracts of MV and the sector and their respective culture supernatants showed several differences with respect to quantity and number of certain protein bands. Overall results showed that the isolate was a non-spore producing mutant with phytotoxicity to several weeds (including weeds tolerant or resistant to glyphosate), and that the phytotoxic effects were generally equivalent to those caused by MV treatment. Results of this first report of a non-sporulating MV mutant that suggest additional studies on protein analysis, and an extended weed host range under greenhouse and field conditions are needed in order to further evaluate its possible bioherbicidal potential.
作者 Robert E. Hoagland Clyde D. Boyette Kenneth C. Stetina Robin H. Jordan Robert E. Hoagland;Clyde D. Boyette;Kenneth C. Stetina;Robin H. Jordan(United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Crop Production Systems Research Unit, Stoneville, MS, USA;United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Biological Control of Pests Research Unit, Stoneville, MS, USA)
出处 《American Journal of Plant Sciences》 2016年第16期2376-2389,共14页 美国植物学期刊(英文)
关键词 BIOHERBICIDE Glyphosate-Resistance Palmer Amaranth KUDZU Hemp Sesbania Sicklepod Myrothecium verrucaria Fungal Sector Bioherbicide Glyphosate-Resistance Palmer Amaranth Kudzu Hemp Sesbania Sicklepod Myrothecium verrucaria Fungal Sector
  • 相关文献

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部