摘要
The Paleozoic flora of the state of Puebla is characterized by the presence of ancient and conservative lineages;we focus this study on the taxonomical Annularia, Bjuvia and the new morphotype. These groups are found in carbonaceous lutite, where paleosoils, small roots and trunks in situ are abundant, and have been associated with swampy environments. In this paper, we discuss the presence of a new architectural form of megaphyll size that has not been registered in other Permian locations. These lutite imprints are the second most abundant in this location and their degree of preservation supports their autochthonous nature. The large size of its funnel-shaped blade and its extremely long petiole support the idea that its size was a response to a competition for biotic resources and to the hydric stress to which communities of this region were exposed, as consequence of the environmental conditions prevailing at the end of the Paleozoic era. It is proposed that they lived in environments with seasonal humidity and this hypothesis is supported by both the abundance of fossil groups and lithology.
The Paleozoic flora of the state of Puebla is characterized by the presence of ancient and conservative lineages;we focus this study on the taxonomical Annularia, Bjuvia and the new morphotype. These groups are found in carbonaceous lutite, where paleosoils, small roots and trunks in situ are abundant, and have been associated with swampy environments. In this paper, we discuss the presence of a new architectural form of megaphyll size that has not been registered in other Permian locations. These lutite imprints are the second most abundant in this location and their degree of preservation supports their autochthonous nature. The large size of its funnel-shaped blade and its extremely long petiole support the idea that its size was a response to a competition for biotic resources and to the hydric stress to which communities of this region were exposed, as consequence of the environmental conditions prevailing at the end of the Paleozoic era. It is proposed that they lived in environments with seasonal humidity and this hypothesis is supported by both the abundance of fossil groups and lithology.