摘要
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is possibly the most important disease of Brassica worldwide. To compare chromosomal positions of Xcc resistance loci in Brassica oleracea between the present and published studies and to develop marker assisted selection (MAS) to resistance against Xcc race 1, we constructed a B. oleracea map, including pW, pX and BoCL markers that were closely linked to previously reported Xcc resistance QTLs. We also analyzed Xcc resistance QTLs by improving our previously reported map derived from the cross of a susceptible double-haploid line (GC P09) with a resistant double-haploid line (Reiho P01). In the nine linkage groups obtained (C1-C9), the major QTL, XccBo(Reiho)2, was derived from Reiho with a maximum LOD score (7.7) in C8. The QTL (LOD 4.4) located in C9, XccBo(GC)1 was derived from the susceptible GC. The other QTL (LOD 4.4), XccBo(Reiho)1, was found in C5. Based on common markers, it was possible to compare our finding Xcc resistance QTLs with the B. oleraceaXcc loci reported by previous authors;XccBo(Reiho)1 and XccBo(GC)1 may be identical to the Xcc resistance QTLs reported previously or a different member contained in the same resistance gene cluster. Our map includes public SSR markers linked to Xcc resistance genes that will promote pyramiding Xcc resistance genes in B. oleracea. The present study will also contribute to a better understanding of genetic control of Xcc resistance.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is possibly the most important disease of Brassica worldwide. To compare chromosomal positions of Xcc resistance loci in Brassica oleracea between the present and published studies and to develop marker assisted selection (MAS) to resistance against Xcc race 1, we constructed a B. oleracea map, including pW, pX and BoCL markers that were closely linked to previously reported Xcc resistance QTLs. We also analyzed Xcc resistance QTLs by improving our previously reported map derived from the cross of a susceptible double-haploid line (GC P09) with a resistant double-haploid line (Reiho P01). In the nine linkage groups obtained (C1-C9), the major QTL, XccBo(Reiho)2, was derived from Reiho with a maximum LOD score (7.7) in C8. The QTL (LOD 4.4) located in C9, XccBo(GC)1 was derived from the susceptible GC. The other QTL (LOD 4.4), XccBo(Reiho)1, was found in C5. Based on common markers, it was possible to compare our finding Xcc resistance QTLs with the B. oleraceaXcc loci reported by previous authors;XccBo(Reiho)1 and XccBo(GC)1 may be identical to the Xcc resistance QTLs reported previously or a different member contained in the same resistance gene cluster. Our map includes public SSR markers linked to Xcc resistance genes that will promote pyramiding Xcc resistance genes in B. oleracea. The present study will also contribute to a better understanding of genetic control of Xcc resistance.