摘要
High-temperature adult-plant (HTAP) resistance expresses when plants grow old and the weather becomes warm. This non-race specific and durable type of resistance has been used successfully in control of wheat stripe rust in the US since early 1960s. This article describes practical procedures for identification and characterization of HTAP resistance and reviews recent studies on discovery of genes conferring HTAP resistance. Recent studies providing insights to the molecular basis for the durability of HTAP resistance will be presented. Strategies for improving levels of HTAP resistance and improving control of stripe rust through combining HTAP resistance with effective all-stage resistance will be discussed.
High-temperature adult-plant (HTAP) resistance expresses when plants grow old and the weather becomes warm. This non-race specific and durable type of resistance has been used successfully in control of wheat stripe rust in the US since early 1960s. This article describes practical procedures for identification and characterization of HTAP resistance and reviews recent studies on discovery of genes conferring HTAP resistance. Recent studies providing insights to the molecular basis for the durability of HTAP resistance will be presented. Strategies for improving levels of HTAP resistance and improving control of stripe rust through combining HTAP resistance with effective all-stage resistance will be discussed.