摘要
Groundnut leaf spot is one of the important factors limiting groundnut productivity in Africa particularly in the Democratic Republic of Congo (DR Congo). Early and late leaf spot disease of groundnut caused by Cercospora arachidicola Hori and Cercosporidium personatum (Berk & Curt.) Deighton, respectively, can cause considerable yield losses without fungicide management. The main objectives of this research were to analyze plant and disease developmental cycles. Significant differences were observed among the groundnut varieties evaluated for resistance to the leaf spot disease. The results show that plant development cycle can be divided into three developmental stages. A first stage characterized by a low production of leaves, a second stage with a significant leaf development and finally a third stage with a reduction of leaves. Interestingly, the leaf spot disease cycle was also divided in three stages. The disease stage characterized by the highest level of symptom expression was not associated with the plant phase with the highest emerged leaves. Disease symptoms reached the highest pick only after the phase of intense leaf development. The molecular analysis revealed that all the groundnut varieties analyzed were genetically closely related even though they showed different reactions to the leaf spot disease.
Groundnut leaf spot is one of the important factors limiting groundnut productivity in Africa particularly in the Democratic Republic of Congo (DR Congo). Early and late leaf spot disease of groundnut caused by Cercospora arachidicola Hori and Cercosporidium personatum (Berk & Curt.) Deighton, respectively, can cause considerable yield losses without fungicide management. The main objectives of this research were to analyze plant and disease developmental cycles. Significant differences were observed among the groundnut varieties evaluated for resistance to the leaf spot disease. The results show that plant development cycle can be divided into three developmental stages. A first stage characterized by a low production of leaves, a second stage with a significant leaf development and finally a third stage with a reduction of leaves. Interestingly, the leaf spot disease cycle was also divided in three stages. The disease stage characterized by the highest level of symptom expression was not associated with the plant phase with the highest emerged leaves. Disease symptoms reached the highest pick only after the phase of intense leaf development. The molecular analysis revealed that all the groundnut varieties analyzed were genetically closely related even though they showed different reactions to the leaf spot disease.