期刊文献+

An Integrated Framework for Regional Assessment of Water, Energy, and Nutrients from Food Loss of Selected Crops in the Lower Fraser Valley, Canada 被引量:1

An Integrated Framework for Regional Assessment of Water, Energy, and Nutrients from Food Loss of Selected Crops in the Lower Fraser Valley, Canada
下载PDF
导出
摘要 Although there is no global shortage of food or water, food security has not been achieved, as human activity has turned these vital resources into “waste”. Wasted food not only loses valuable water resources but embedded calories of human energy and nutrients for healthy human populations. The Food and Agricultural Organization of the United Nations, in addressing these concerns, focuses on a global scale largely on an economic estimate of individual components of energy or water or nutrient loss. It is suggested that more information is required through local or regional assessments to provide better estimates, incorporating regional factors of the losses along the food supply chain. To address this suggestion, this study focused on an intensive agricultural and rapidly urbanizing region of Canada, the Lower Fraser Valley of British Columbia. Seven selected crops, including annual crops such as green peas, sweet corn and potato, and perennial crops that included three berry crops were assessed for their water, both constituent and virtual, as well as embedded energy, protein, and Vitamin C. Annual virtual water losses were higher for sprinkler than drip irrigation, ranging from 82 × 10<sup>6</sup> kg of water for strawberry to 7570 × 10<sup>6</sup> kg for blueberry. These high virtual water losses estimated along the food chain confirm the significance of food loss impacts on local water resources. Estimates of losses of food in kg were highest at the consumer level along the food chain and it was estimated that wasted food from the seven crops selected would have supplied the protein and caloric energy of over 33,000 men per year and Vitamin C of about 240,000 men per year. This assessment increases the awareness of food loss impacts from a regional perspective and provides a framework for future research on both environmental and nutritional implications of wasted food. Although there is no global shortage of food or water, food security has not been achieved, as human activity has turned these vital resources into “waste”. Wasted food not only loses valuable water resources but embedded calories of human energy and nutrients for healthy human populations. The Food and Agricultural Organization of the United Nations, in addressing these concerns, focuses on a global scale largely on an economic estimate of individual components of energy or water or nutrient loss. It is suggested that more information is required through local or regional assessments to provide better estimates, incorporating regional factors of the losses along the food supply chain. To address this suggestion, this study focused on an intensive agricultural and rapidly urbanizing region of Canada, the Lower Fraser Valley of British Columbia. Seven selected crops, including annual crops such as green peas, sweet corn and potato, and perennial crops that included three berry crops were assessed for their water, both constituent and virtual, as well as embedded energy, protein, and Vitamin C. Annual virtual water losses were higher for sprinkler than drip irrigation, ranging from 82 × 10<sup>6</sup> kg of water for strawberry to 7570 × 10<sup>6</sup> kg for blueberry. These high virtual water losses estimated along the food chain confirm the significance of food loss impacts on local water resources. Estimates of losses of food in kg were highest at the consumer level along the food chain and it was estimated that wasted food from the seven crops selected would have supplied the protein and caloric energy of over 33,000 men per year and Vitamin C of about 240,000 men per year. This assessment increases the awareness of food loss impacts from a regional perspective and provides a framework for future research on both environmental and nutritional implications of wasted food.
作者 Ana Reinesch Lewis Fausak Anne Joseph Skylar Kylstra Les Lavkulich Ana Reinesch;Lewis Fausak;Anne Joseph;Skylar Kylstra;Les Lavkulich(Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada)
出处 《Agricultural Sciences》 2022年第5期633-657,共25页 农业科学(英文)
关键词 Food Loss Food Waste Crop Water Demand Virtual Water NUTRITION Food Loss Food Waste Crop Water Demand Virtual Water Nutrition
  • 相关文献

参考文献1

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部