期刊文献+

A Conservative Pressure-Correction Method on Collocated Grid for Low Mach Number Flows

A Conservative Pressure-Correction Method on Collocated Grid for Low Mach Number Flows
下载PDF
导出
摘要 A novel extension to SMAC scheme is proposed for variable density flows under low Mach number approximation. The algorithm is based on a predictor—corrector time integration scheme that employs a projection method for the momentum equation. A constant-coefficient Poisson equation is solved for the pressure following both the predictor and corrector steps to satisfy the continuity equation at each time step. The proposed algorithm has second order centrally differenced convective fluxes with upwinding based on Cell Peclet number while diffusive flux are viscous fourth order accurate. Spatial discretization is performed on a collocated grid system that offers computational simplicity and straight forward extension to curvilinear coordinate systems. The algorithm is kinetic energy preserving. Further in this paper robustness and accuracy are demonstrated by performing test on channel flow with non-Boussinesq condition on different temperature ratios. A novel extension to SMAC scheme is proposed for variable density flows under low Mach number approximation. The algorithm is based on a predictor—corrector time integration scheme that employs a projection method for the momentum equation. A constant-coefficient Poisson equation is solved for the pressure following both the predictor and corrector steps to satisfy the continuity equation at each time step. The proposed algorithm has second order centrally differenced convective fluxes with upwinding based on Cell Peclet number while diffusive flux are viscous fourth order accurate. Spatial discretization is performed on a collocated grid system that offers computational simplicity and straight forward extension to curvilinear coordinate systems. The algorithm is kinetic energy preserving. Further in this paper robustness and accuracy are demonstrated by performing test on channel flow with non-Boussinesq condition on different temperature ratios.
出处 《World Journal of Mechanics》 2012年第5期253-261,共9页 力学国际期刊(英文)
关键词 LES Non-Boussinesq Low MACH NUMBER TURBULENT Flow LES Non-Boussinesq Low Mach Number Turbulent Flow
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部