期刊文献+

Capability of Visible-Near Infrared Spectroscopy in Estimating Soils Carbon, Potassium and Phosphorus 被引量:1

Capability of Visible-Near Infrared Spectroscopy in Estimating Soils Carbon, Potassium and Phosphorus
下载PDF
导出
摘要 The spectroscopy technique has many advantages over conventional analytical methods since it is fast and easy to implement and with no use of chemical extractants. The objective of this study is to quantify soil total Carbon (C), available Phosphorus (P) and exchangeable potassium (K) using VIS-NIR reflectance spectroscopy. A total of 877 soils samples were collected in various agricultural fields in Mali. Multivariate analysis was applied to the recorded soils spectra to estimate the soil chemical properties. Results reveal the over performance of the Principal Component Regression (PCR) compared to the Partial Least Square Regression (PLSR). For coefficient of determination (R2), PLSR accounts for 0.29, 0.42 and 0.57;while the PCR gave 0.17, 0.34 and 0.50, respectively for C, P and K. Nevertheless, this study demonstrates the potential of the VIS-NIR reflectance spectroscopy in analyzing the soils chemical properties. The spectroscopy technique has many advantages over conventional analytical methods since it is fast and easy to implement and with no use of chemical extractants. The objective of this study is to quantify soil total Carbon (C), available Phosphorus (P) and exchangeable potassium (K) using VIS-NIR reflectance spectroscopy. A total of 877 soils samples were collected in various agricultural fields in Mali. Multivariate analysis was applied to the recorded soils spectra to estimate the soil chemical properties. Results reveal the over performance of the Principal Component Regression (PCR) compared to the Partial Least Square Regression (PLSR). For coefficient of determination (R2), PLSR accounts for 0.29, 0.42 and 0.57;while the PCR gave 0.17, 0.34 and 0.50, respectively for C, P and K. Nevertheless, this study demonstrates the potential of the VIS-NIR reflectance spectroscopy in analyzing the soils chemical properties.
出处 《Optics and Photonics Journal》 2018年第5期123-134,共12页 光学与光子学期刊(英文)
关键词 VIS-NIR Spectroscopy SOILS Chemical Properties Principal Component Regression (PCR) Partial Least SQUARE Regression (PLSR) VIS-NIR Spectroscopy Soils Chemical Properties Principal Component Regression (PCR) Partial Least Square Regression (PLSR)
  • 相关文献

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部