期刊文献+

A Modified Regression Estimator for Single Phase Sampling in the Presence of Observational Errors

A Modified Regression Estimator for Single Phase Sampling in the Presence of Observational Errors
下载PDF
导出
摘要 In this paper, a regression method of estimation has been used to derive the mean estimate of the survey variable using simple random sampling without replacement in the presence of observational errors. Two covariates were used and a case where the observational errors were in both the survey variable and the covariates was considered. The inclusion of observational errors was due to the fact that data collected through surveys are often not free from errors that occur during observation. These errors can occur due to over-reporting, under-reporting, memory failure by the respondents or use of imprecise tools of data collection. The expression of mean squared error (MSE) based on the obtained estimator has been derived to the first degree of approximation. The results of a simulation study show that the derived modified regression mean estimator under observational errors is more efficient than the mean per unit estimator and some other existing estimators. The proposed estimator can therefore be used in estimating a finite population mean, while considering observational errors that may occur during a study. In this paper, a regression method of estimation has been used to derive the mean estimate of the survey variable using simple random sampling without replacement in the presence of observational errors. Two covariates were used and a case where the observational errors were in both the survey variable and the covariates was considered. The inclusion of observational errors was due to the fact that data collected through surveys are often not free from errors that occur during observation. These errors can occur due to over-reporting, under-reporting, memory failure by the respondents or use of imprecise tools of data collection. The expression of mean squared error (MSE) based on the obtained estimator has been derived to the first degree of approximation. The results of a simulation study show that the derived modified regression mean estimator under observational errors is more efficient than the mean per unit estimator and some other existing estimators. The proposed estimator can therefore be used in estimating a finite population mean, while considering observational errors that may occur during a study.
作者 Nujayma M. A. Salim Christopher O. Onyango Nujayma M. A. Salim;Christopher O. Onyango(Department of Mathematics and Actuarial Science, Kenyatta University, Nairobi, Kenya)
出处 《Open Journal of Statistics》 2022年第2期175-187,共13页 统计学期刊(英文)
关键词 ESTIMATE Regression COVARIATES Single Phase Sampling Observational Errors Mean Squared Error Estimate Regression Covariates Single Phase Sampling Observational Errors Mean Squared Error
  • 相关文献

参考文献1

二级参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部