期刊文献+

Evaluating Methods for Dealing with Missing Outcomes in Discrete-Time Event History Analysis: A Simulation Study

Evaluating Methods for Dealing with Missing Outcomes in Discrete-Time Event History Analysis: A Simulation Study
下载PDF
导出
摘要 <strong>Background:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> In discrete-time event history analysis, subjects are measured once each time period until they experience the event, prematurely drop out, or when the study concludes. This implies measuring event status of a subject in each time period determines whether (s)he should be measured in subsequent time periods. For that reason, intermittent missing event status causes a problem because, unlike other repeated measurement designs, it does not make sense to simply ignore the corresponding missing event status from the analysis (as long as the dropout is ignorable). </span><b><span style="font-family:Verdana;">Method:</span></b><span style="font-family:Verdana;"> We used Monte Carlo simulation to evaluate and compare various alternatives, including event occurrence recall, event (non-)occurrence, case deletion, period deletion, and single and multiple imputation methods, to deal with missing event status. Moreover, we showed the methods’ performance in the analysis of an empirical example on relapse to drug use. </span><b><span style="font-family:Verdana;">Result:</span></b><span style="font-family:Verdana;"> The strategies assuming event (non-)occurrence and the recall strategy had the worst performance because of a substantial parameter bias and a sharp decrease in coverage rate. Deletion methods suffered from either loss of power or undercoverage</span><span style="color:red;"> </span><span style="font-family:Verdana;">issues resulting from a biased standard error. Single imputation recovered the bias issue but showed an undercoverage estimate. Multiple imputations performed reasonabl</span></span><span style="font-family:Verdana;">y</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> with a negligible standard error bias leading to a gradual decrease in power. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> On the basis of the simulation resu <strong>Background:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> In discrete-time event history analysis, subjects are measured once each time period until they experience the event, prematurely drop out, or when the study concludes. This implies measuring event status of a subject in each time period determines whether (s)he should be measured in subsequent time periods. For that reason, intermittent missing event status causes a problem because, unlike other repeated measurement designs, it does not make sense to simply ignore the corresponding missing event status from the analysis (as long as the dropout is ignorable). </span><b><span style="font-family:Verdana;">Method:</span></b><span style="font-family:Verdana;"> We used Monte Carlo simulation to evaluate and compare various alternatives, including event occurrence recall, event (non-)occurrence, case deletion, period deletion, and single and multiple imputation methods, to deal with missing event status. Moreover, we showed the methods’ performance in the analysis of an empirical example on relapse to drug use. </span><b><span style="font-family:Verdana;">Result:</span></b><span style="font-family:Verdana;"> The strategies assuming event (non-)occurrence and the recall strategy had the worst performance because of a substantial parameter bias and a sharp decrease in coverage rate. Deletion methods suffered from either loss of power or undercoverage</span><span style="color:red;"> </span><span style="font-family:Verdana;">issues resulting from a biased standard error. Single imputation recovered the bias issue but showed an undercoverage estimate. Multiple imputations performed reasonabl</span></span><span style="font-family:Verdana;">y</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> with a negligible standard error bias leading to a gradual decrease in power. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> On the basis of the simulation resu
作者 Shahab Jolani Nils L. M. van de Ven Maryam Safarkhani Mirjam Moerbeek Shahab Jolani;Nils L. M. van de Ven;Maryam Safarkhani;Mirjam Moerbeek(Department of Methodology and Statistics, Research School CAPHRI, Maastricht University, Maastricht, The Netherlands;Department of Methodology and Statistics, Utrecht University, Utrecht, The Netherlands;Center for Mathematical Sciences, Merck Sharp & Dohme, Oss, The Netherlands)
出处 《Open Journal of Statistics》 2021年第1期36-76,共41页 统计学期刊(英文)
关键词 Missing Data DELETION IMPUTATION Retrospective Observations Survival Analysis Missing Data Deletion Imputation Retrospective Observations Survival Analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部