期刊文献+

A Wavelet-Based Method to Measure Stock Market Development

A Wavelet-Based Method to Measure Stock Market Development
下载PDF
导出
摘要 In this paper, we introduce a novel algorithm, based on the wavelet transform, to measure stock market development. This algorithm is applied to the return series of fourteen worldwide market indices from 1996 to 2005. We find that a comparison of the return series in terms of the quantity of fractional Gaussian noise (fGn), for different values of Hurst exponent (H), facilitates the classification of stock markets according to their degree of development. We also observe that the simple classification of stock markets into “emerging” or “developing” and “mature” or “developed” is no longer sufficient. However, stock markets can be grouped into three categories that we named emerging, intermediate and mature. In this paper, we introduce a novel algorithm, based on the wavelet transform, to measure stock market development. This algorithm is applied to the return series of fourteen worldwide market indices from 1996 to 2005. We find that a comparison of the return series in terms of the quantity of fractional Gaussian noise (fGn), for different values of Hurst exponent (H), facilitates the classification of stock markets according to their degree of development. We also observe that the simple classification of stock markets into “emerging” or “developing” and “mature” or “developed” is no longer sufficient. However, stock markets can be grouped into three categories that we named emerging, intermediate and mature.
出处 《Open Journal of Statistics》 2014年第1期89-96,共8页 统计学期刊(英文)
关键词 WAVELET TRANSFORM Hurst EXPONENT (H) STOCK Market CLASSIFICATIONS Wavelet Transform Hurst Exponent (H) Stock Market Classifications
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部