摘要
In this communication, we report about the influence of barrier U1, formed by magnetic layer (Zn0.9Be0.05Mn0.05Se) and changed by extending magnetic field due to Zeeman effect on the ground state energy of electron in nanoheterostructure Zn0.943Be0.057Se-ZnSe-Zn0.943Be0.057Se-Zn0.9Be0.05Mn0.05Se. The investigations were also carried out for different width of unmagnetic layer (Zn0.943Be0.057Se), with which such structures were prepared. The results point on decreasing of the ground state energy with magnetic field increasing. The unmagnetic layer width does not change essentially the energy of electrons in strong fields. In small fields, it is shown that the electron energy does not always depend on the extended field. These cases are also dependent on non magnetic layer width. The received dependences are in qualitative agreement with the experiment data on photoluminescence spectra.
In this communication, we report about the influence of barrier U1, formed by magnetic layer (Zn0.9Be0.05Mn0.05Se) and changed by extending magnetic field due to Zeeman effect on the ground state energy of electron in nanoheterostructure Zn0.943Be0.057Se-ZnSe-Zn0.943Be0.057Se-Zn0.9Be0.05Mn0.05Se. The investigations were also carried out for different width of unmagnetic layer (Zn0.943Be0.057Se), with which such structures were prepared. The results point on decreasing of the ground state energy with magnetic field increasing. The unmagnetic layer width does not change essentially the energy of electrons in strong fields. In small fields, it is shown that the electron energy does not always depend on the extended field. These cases are also dependent on non magnetic layer width. The received dependences are in qualitative agreement with the experiment data on photoluminescence spectra.