期刊文献+

Tracking a Tip Vortex with Adaptive Vorticity Confinement and Hybrid RANS-LES

Tracking a Tip Vortex with Adaptive Vorticity Confinement and Hybrid RANS-LES
下载PDF
导出
摘要 The prediction of coherent vortices with standard RANS solvers suffers especially from discretisation and modelling errors which both introduce numerical diffusion. The adaptive Vorticity Confinement (VC) method targets to counteract one part of the discretisation error: the one due to the discretisation of the convection term. This method is applied in conjunction with a hybrid RANS-LES turbulence model to overcome the overprediction of turbulence intensity inside vortex cores which is a typical deficiency of common RANS solvers. The third main source for numerical diffusion originates from the spatial discretisation of the solution domain in the vicinity of the vortex core. The corresponding error is analysed within a grid convergence study. A modification of the adaptive VC method used in conjunction with a high-order discretisation of the convection term is presented and proves to be superior. The simulations of a wing tip vortex flow are validated in terms of vortex velocity profiles using the results of a wind tunnel experiment performed by Devenport and colleagues (1996). Besides, the results are compared with another numerical study by Wells (2009) who uses a Reynolds Stress turbulence model. It turns out that the application of the modified adaptive VC method on the one hand reinforces the tip vortex, and on the other hand accelerates the axial flow which leads to a slight degradation compared to the experimental results. The result of Wells is more accurate close to the wing, but the result obtained here is superior further downstream as no excessive diffusion of the tip vortex occurs. The prediction of coherent vortices with standard RANS solvers suffers especially from discretisation and modelling errors which both introduce numerical diffusion. The adaptive Vorticity Confinement (VC) method targets to counteract one part of the discretisation error: the one due to the discretisation of the convection term. This method is applied in conjunction with a hybrid RANS-LES turbulence model to overcome the overprediction of turbulence intensity inside vortex cores which is a typical deficiency of common RANS solvers. The third main source for numerical diffusion originates from the spatial discretisation of the solution domain in the vicinity of the vortex core. The corresponding error is analysed within a grid convergence study. A modification of the adaptive VC method used in conjunction with a high-order discretisation of the convection term is presented and proves to be superior. The simulations of a wing tip vortex flow are validated in terms of vortex velocity profiles using the results of a wind tunnel experiment performed by Devenport and colleagues (1996). Besides, the results are compared with another numerical study by Wells (2009) who uses a Reynolds Stress turbulence model. It turns out that the application of the modified adaptive VC method on the one hand reinforces the tip vortex, and on the other hand accelerates the axial flow which leads to a slight degradation compared to the experimental results. The result of Wells is more accurate close to the wing, but the result obtained here is superior further downstream as no excessive diffusion of the tip vortex occurs.
作者 Dag-Frederik Feder Moustafa Abdel-Maksoud Dag-Frederik Feder;Moustafa Abdel-Maksoud(Institute for Fluid Dynamics and Ship Theory, Hamburg University of Technology (TUHH), Hamburg, Germany)
出处 《Open Journal of Fluid Dynamics》 2016年第4期406-429,共24页 流体动力学(英文)
关键词 Tip Vortex Adaptive Vorticity Confinement Hybrid RANS-LES Devenport Numerical Diffusion Tip Vortex Adaptive Vorticity Confinement Hybrid RANS-LES Devenport Numerical Diffusion
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部