摘要
The interaction of pulsed electromagnetic fields (PEMF) with the human body may result in a variety of positive outcomes including analgesia, enhanced healing, chondroprotection, cognitive improvement and better quality of life. Previous human studies have also revealed the potential of PEMF to enhance muscle function and athletic performance. To further evaluate this potential, an open label pilot study was conducted with 19 competitive cyclists who repeatedly participated in 63 training routes. Cyclist performance was tracked before and during use of a novel and portable PEMF device that is worn as a wristband. Comparison of performance before and during use of the wristband revealed a significant association with improved muscle power. The odds ratio was 3.02 (P < 0.01) for experiencing increased muscle power while wearing the PEMF device. Among the cycling routes in which an increase was observed, the average increase in power was about 9.8%. The data suggests the novel PEMF technology may be a safe and effective therapeutic approach for improved physical performance and likely involves improved oxygen delivery due to reduced rouleaux (erythrocyte aggregation). These results warrant further investigation comprising larger studies and additional outcomes.
The interaction of pulsed electromagnetic fields (PEMF) with the human body may result in a variety of positive outcomes including analgesia, enhanced healing, chondroprotection, cognitive improvement and better quality of life. Previous human studies have also revealed the potential of PEMF to enhance muscle function and athletic performance. To further evaluate this potential, an open label pilot study was conducted with 19 competitive cyclists who repeatedly participated in 63 training routes. Cyclist performance was tracked before and during use of a novel and portable PEMF device that is worn as a wristband. Comparison of performance before and during use of the wristband revealed a significant association with improved muscle power. The odds ratio was 3.02 (P < 0.01) for experiencing increased muscle power while wearing the PEMF device. Among the cycling routes in which an increase was observed, the average increase in power was about 9.8%. The data suggests the novel PEMF technology may be a safe and effective therapeutic approach for improved physical performance and likely involves improved oxygen delivery due to reduced rouleaux (erythrocyte aggregation). These results warrant further investigation comprising larger studies and additional outcomes.