摘要
This article presents a physical model, which describes the ideas of special relativity, in a rational, logical, simple and understandable manner, while using basic mathematical tools. The model is based on Albert Einstein’s formula, which describes the “rest” energy of a body with mass (m), given by the formula E=mc2. Based on this formula, and in accordance with the theory of special relativity, we present here a model of a body, moving at a constant velocity in space (at high speeds, close to the speed of light), with speed equal to the speed of light in space-time, determined with an “energy angle” and negative mass. This model offers a method for creating negative mass, a calculating method for the relative velocity, and a method for calculating energy and momentum, in a completely elastic collision and plastic collision, different than in the contemporary nowadays method found in classical and modern physics. In addition, the new model solves problems and paradoxes known in special relativity physics, such as the Twin Paradox and others.
This article presents a physical model, which describes the ideas of special relativity, in a rational, logical, simple and understandable manner, while using basic mathematical tools. The model is based on Albert Einstein’s formula, which describes the “rest” energy of a body with mass (m), given by the formula E=mc2. Based on this formula, and in accordance with the theory of special relativity, we present here a model of a body, moving at a constant velocity in space (at high speeds, close to the speed of light), with speed equal to the speed of light in space-time, determined with an “energy angle” and negative mass. This model offers a method for creating negative mass, a calculating method for the relative velocity, and a method for calculating energy and momentum, in a completely elastic collision and plastic collision, different than in the contemporary nowadays method found in classical and modern physics. In addition, the new model solves problems and paradoxes known in special relativity physics, such as the Twin Paradox and others.