摘要
The theoretical investigation of the potential energy curves, in the representation 2s+1Λ(+/-), of the 27 low-lying Doublet and Quartet electronic states of the BP+ molecular ion has been performed with the methods in quantum chemistry, the Complete Active Space Self Consistent Field (CASSCF) and the Multireference Configuration Interaction (MRCI) calculations. The harmonic vibrational frequency ωe, the inter-nuclear distance at equilibrium Re, the rotational constant Be, the electronic energy with respect to the minimum ground state energy Te, and the permanent dipole moment have also been calculated. Twenty-three new electronic states have been investigated here for the first time. The comparison between the values of the present work and those available in the literature for several electronic states shows a good agreement. These investigated data can be a conducive to further work on BP+ molecular ion in both experimental and theoretical research.
The theoretical investigation of the potential energy curves, in the representation 2s+1Λ(+/-), of the 27 low-lying Doublet and Quartet electronic states of the BP+ molecular ion has been performed with the methods in quantum chemistry, the Complete Active Space Self Consistent Field (CASSCF) and the Multireference Configuration Interaction (MRCI) calculations. The harmonic vibrational frequency ωe, the inter-nuclear distance at equilibrium Re, the rotational constant Be, the electronic energy with respect to the minimum ground state energy Te, and the permanent dipole moment have also been calculated. Twenty-three new electronic states have been investigated here for the first time. The comparison between the values of the present work and those available in the literature for several electronic states shows a good agreement. These investigated data can be a conducive to further work on BP+ molecular ion in both experimental and theoretical research.