摘要
In some quantum chemical applications, the potential models are linear combination of single exactly solvable potentials. This is the case equivalent of the Stark effect for a charged harmonic oscillator (HO) in a uniform electric field of specific strength (HO in an external dipole field). We obtain the exact s-wave solutions of the Dirac equation for some potential models which are linear combination of single exactly solvable potentials (ESPs). In the framework of the spin and pseudospin symmetric concept, we calculate analytical expressions for the energy spectrum and the corresponding two-component upper- and lower-spinors of the two Dirac particles by using the Nikiforov-Uvarov (NU) method, in closed form. The nonrelativistic limit of the solution is also studied and compared with the other works.
In some quantum chemical applications, the potential models are linear combination of single exactly solvable potentials. This is the case equivalent of the Stark effect for a charged harmonic oscillator (HO) in a uniform electric field of specific strength (HO in an external dipole field). We obtain the exact s-wave solutions of the Dirac equation for some potential models which are linear combination of single exactly solvable potentials (ESPs). In the framework of the spin and pseudospin symmetric concept, we calculate analytical expressions for the energy spectrum and the corresponding two-component upper- and lower-spinors of the two Dirac particles by using the Nikiforov-Uvarov (NU) method, in closed form. The nonrelativistic limit of the solution is also studied and compared with the other works.