期刊文献+

Predicting Ecosystem Response to Perturbation from Thermodynamic Criteria

Predicting Ecosystem Response to Perturbation from Thermodynamic Criteria
下载PDF
导出
摘要 The response of ecosystems to perturbations is considered from a thermodynamic perspective by acknowl-edging that, as for all macroscopic systems and processes, the dynamics and stability of ecosystems is sub-ject to definite thermodynamic law. For open ecosystems, exchanging energy, work, and mass with the en-vironment, the thermodynamic criteria come from non-equilibrium or irreversible thermodynamics. For ecosystems during periods in which the boundary conditions may be considered as being constant, it is shown that criteria from irreversible thermodynamic theory are sufficient to permit a quantitative prediction of ecosystem response to perturbation. This framework is shown to provide a new perspective on the popula-tion dynamics of real ecosystems. The response of ecosystems to perturbations is considered from a thermodynamic perspective by acknowl-edging that, as for all macroscopic systems and processes, the dynamics and stability of ecosystems is sub-ject to definite thermodynamic law. For open ecosystems, exchanging energy, work, and mass with the en-vironment, the thermodynamic criteria come from non-equilibrium or irreversible thermodynamics. For ecosystems during periods in which the boundary conditions may be considered as being constant, it is shown that criteria from irreversible thermodynamic theory are sufficient to permit a quantitative prediction of ecosystem response to perturbation. This framework is shown to provide a new perspective on the popula-tion dynamics of real ecosystems.
机构地区 不详
出处 《Journal of Modern Physics》 2011年第6期627-635,共9页 现代物理(英文)
关键词 Population Dynamics ECOSYSTEM PERTURBATION NON-EQUILIBRIUM Thermodynamics ENRICHMENT PARADOX Population Dynamics Ecosystem Perturbation Non-Equilibrium Thermodynamics Enrichment Paradox
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部