摘要
The results are presented of an experimental investigation of heat transfer in an air-liquid cooling system for a Switch-Mode Power Supply (SMPS) for TV digital power amplifiers. Since these SMPSs are characterized by high power and high compactness, thereby making the standard cooling techniques difficult to be used, a new cooling system is developed, using water and air as the cooling media. The active components (MOSFETs) are cooled with a liquid cold-plate, the passive ones (condensers, transformers, coils) with an air flow, in turn cooled by the cold-plate. By inserting the cooling system in an experimental tool where it is possible to control the cooling water, measurements are made of temperature in the significant points of the SMPS. The electric efficiency is also measured. The evaluation of the thermal performance of this cooling system is useful in order to limit its maximum operational temperature. The efficacy of the cooling system is demonstrated;the trends of efficiency and power dissipation are evidenced.
The results are presented of an experimental investigation of heat transfer in an air-liquid cooling system for a Switch-Mode Power Supply (SMPS) for TV digital power amplifiers. Since these SMPSs are characterized by high power and high compactness, thereby making the standard cooling techniques difficult to be used, a new cooling system is developed, using water and air as the cooling media. The active components (MOSFETs) are cooled with a liquid cold-plate, the passive ones (condensers, transformers, coils) with an air flow, in turn cooled by the cold-plate. By inserting the cooling system in an experimental tool where it is possible to control the cooling water, measurements are made of temperature in the significant points of the SMPS. The electric efficiency is also measured. The evaluation of the thermal performance of this cooling system is useful in order to limit its maximum operational temperature. The efficacy of the cooling system is demonstrated;the trends of efficiency and power dissipation are evidenced.