摘要
To answer the queries concerning penetrability of ~1 μT, physiologically patterned, time-varying magnetic fields through the cranium, the proportions of attenuation through thicknesses and densities of ~3 times that of the human skull were measured directly. There was no reduction in the intensity of the magnetic field when two 2 cm thick dried pine boards (4.3 × 103 kg·m-3) were placed between the pairs of solenoids separated by the approximate width of the skull. Although volumes of water containing intracellular concentrations of ions did not attenuate the field intensity, placement of 290 cm2 of 2 mm sheets of duct metal reduced the amplitude by 25%. Spectra comparisons showed a clear congruence in profiles between direct measurement of the applied field and the original computer-generated pattern. These results indicate there is little validity to claims that weak, time-varying magnetic fields applied in this manner are eliminated or significantly attenuated by the human skull.
To answer the queries concerning penetrability of ~1 μT, physiologically patterned, time-varying magnetic fields through the cranium, the proportions of attenuation through thicknesses and densities of ~3 times that of the human skull were measured directly. There was no reduction in the intensity of the magnetic field when two 2 cm thick dried pine boards (4.3 × 103 kg·m-3) were placed between the pairs of solenoids separated by the approximate width of the skull. Although volumes of water containing intracellular concentrations of ions did not attenuate the field intensity, placement of 290 cm2 of 2 mm sheets of duct metal reduced the amplitude by 25%. Spectra comparisons showed a clear congruence in profiles between direct measurement of the applied field and the original computer-generated pattern. These results indicate there is little validity to claims that weak, time-varying magnetic fields applied in this manner are eliminated or significantly attenuated by the human skull.