期刊文献+

The Impact of Thermal Modeling on Limiting RF-EMF

The Impact of Thermal Modeling on Limiting RF-EMF
下载PDF
导出
摘要 The paper quantitatively assesses the relationship between specific energy absorption rates (SAR) of radio frequency (RF) electromagnetic fields (EMF) and resulting intracorporal tissue temperature changes (ΔT) at whole body exposure of a small person to resonant RF EMF. Applied thermal modeling allowed accounting also for dynamic thermoregulatory responses. As expected from physical laws the correlation of all local SAR values and ΔT data was fairly good. However, at local level SAR proved to be only weakly associated with ΔT. Even if averaged, over any 10 g tissue the ratio ΔT10g/SAR10g still varied by almost two orders of magnitudes. Blood perfusion was found to play a major role in affecting local temperature changes and caused even net cooling. The results demonstrate that local SAR is a poor surrogate for local temperature change, and that conventional static thermal modeling underestimates body core temperature. Results demonstrated that recommended reference levels of RF EMF fail to reliably prevent from exceeding yet legally binding basic restrictions not only with regard to whole-body SAR but also with regard to whole-body temperature rise (ΔT). Consequently, from a legal point of view general presumption of conformity is no longer justified. While thermal basic restrictions were exceeded if related to the whole-body averaged value, compliance could not be excluded with regard to body-core related values. Further results might allow improving EMF limiting in terms of relating it more closely to the basic health-relevant parameter which is tissue temperature change. The paper quantitatively assesses the relationship between specific energy absorption rates (SAR) of radio frequency (RF) electromagnetic fields (EMF) and resulting intracorporal tissue temperature changes (ΔT) at whole body exposure of a small person to resonant RF EMF. Applied thermal modeling allowed accounting also for dynamic thermoregulatory responses. As expected from physical laws the correlation of all local SAR values and ΔT data was fairly good. However, at local level SAR proved to be only weakly associated with ΔT. Even if averaged, over any 10 g tissue the ratio ΔT10g/SAR10g still varied by almost two orders of magnitudes. Blood perfusion was found to play a major role in affecting local temperature changes and caused even net cooling. The results demonstrate that local SAR is a poor surrogate for local temperature change, and that conventional static thermal modeling underestimates body core temperature. Results demonstrated that recommended reference levels of RF EMF fail to reliably prevent from exceeding yet legally binding basic restrictions not only with regard to whole-body SAR but also with regard to whole-body temperature rise (ΔT). Consequently, from a legal point of view general presumption of conformity is no longer justified. While thermal basic restrictions were exceeded if related to the whole-body averaged value, compliance could not be excluded with regard to body-core related values. Further results might allow improving EMF limiting in terms of relating it more closely to the basic health-relevant parameter which is tissue temperature change.
出处 《Journal of Electromagnetic Analysis and Applications》 2013年第4期137-144,共8页 电磁分析与应用期刊(英文)
关键词 Electromagnetic FIELDS Radio Frequency Health RISKS TISSUE HEATING Specific Absorption Rate Electromagnetic Fields Radio Frequency Health Risks Tissue Heating Specific Absorption Rate
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部