摘要
This study employs mathematical modeling to analyze the impact of active immigrants on Foot and Mouth Disease (FMD) transmission dynamics. We calculate the reproduction number (R<sub>0</sub>) using the next-generation matrix approach. Applying the Routh-Hurwitz Criterion, we establish that the Disease-Free Equilibrium (DFE) point achieves local asymptotic stability when R<sub>0</sub> α<sub>1</sub> and α<sub>2</sub>) are closely associated with reduced susceptibility in animal populations, underscoring the link between immigrants and susceptibility. Furthermore, our findings emphasize the interplay of disease introduction with population response and adaptation, particularly involving incoming infectious immigrants. Swift interventions are vital due to the limited potential for disease establishment and rapid susceptibility decline. This study offers crucial insights into the complexities of FMD transmission with active immigrants, informing effective disease management strategies.
This study employs mathematical modeling to analyze the impact of active immigrants on Foot and Mouth Disease (FMD) transmission dynamics. We calculate the reproduction number (R<sub>0</sub>) using the next-generation matrix approach. Applying the Routh-Hurwitz Criterion, we establish that the Disease-Free Equilibrium (DFE) point achieves local asymptotic stability when R<sub>0</sub> α<sub>1</sub> and α<sub>2</sub>) are closely associated with reduced susceptibility in animal populations, underscoring the link between immigrants and susceptibility. Furthermore, our findings emphasize the interplay of disease introduction with population response and adaptation, particularly involving incoming infectious immigrants. Swift interventions are vital due to the limited potential for disease establishment and rapid susceptibility decline. This study offers crucial insights into the complexities of FMD transmission with active immigrants, informing effective disease management strategies.
作者
Issa Shabani Mfinanga
Nyimvua Shaban
Theresia Marijani
Issa Shabani Mfinanga;Nyimvua Shaban;Theresia Marijani(Department of Mathematics, University of Dar es Salaam, Dar es Salaam, Tanzania;Department of Mathematics and Statistics, Sokoine University of Agriculture, Morogoro, Tanzania)