摘要
We consider the psychophysical experiments in which the test subject’s binary reaction is determined by the prescribed exposure duration to a stimulus and a random variable subjective threshold. For example, when a subject is exposed to a millimeter wave beam for a prescribed duration, the occurrence of flight action is binary (yes or no). In experiments, in addition to the binary outcome, the actuation time of flight action is also recorded if it occurs;the delay from the initiation time to the actuation time of flight action is the human reaction time, which is not measurable. In this study, we model the random subjective threshold as a Weibull distribution and formulate an inference method for estimating the human reaction time, from data of prescribed exposure durations, binary outcomes and actuation times of flight action collected in a sequence of tests. Numerical simulations demonstrate that the inference of human reaction time based on the Weibull distribution converges to the correct value even when the underlying true model deviates from the inference model. This robustness of the inference method makes it applicable to real experimental data where the underlying true model is unknown.
We consider the psychophysical experiments in which the test subject’s binary reaction is determined by the prescribed exposure duration to a stimulus and a random variable subjective threshold. For example, when a subject is exposed to a millimeter wave beam for a prescribed duration, the occurrence of flight action is binary (yes or no). In experiments, in addition to the binary outcome, the actuation time of flight action is also recorded if it occurs;the delay from the initiation time to the actuation time of flight action is the human reaction time, which is not measurable. In this study, we model the random subjective threshold as a Weibull distribution and formulate an inference method for estimating the human reaction time, from data of prescribed exposure durations, binary outcomes and actuation times of flight action collected in a sequence of tests. Numerical simulations demonstrate that the inference of human reaction time based on the Weibull distribution converges to the correct value even when the underlying true model deviates from the inference model. This robustness of the inference method makes it applicable to real experimental data where the underlying true model is unknown.
作者
Hongyun Wang
Maryam Adamzadeh
Wesley A. Burgei
Shannon E. Foley
Hong Zhou
Hongyun Wang;Maryam Adamzadeh;Wesley A. Burgei;Shannon E. Foley;Hong Zhou(Department of Applied Mathematics, University of California, Santa Cruz, CA, USA;U.S. Department of Defense, Joint Intermediate Force Capabilities Office, Quantico, VA, USA;Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA, USA)