摘要
In this paper, we look for solutions to the following Schrödinger-Bopp-Podolsky system with prescribed L<sup>2</sup>-norm constraint , where q ≠ 0, a, ρ> 0 are constants. At first, by the classical minimizing argument, we obtain a ground state solution to the above problem for sufficiently small ρwhen . Secondly, in the case p = 6, we show the nonexistence of positive solutions by using a Liouville-type result. Finally, we argue by contradiction to investigate the orbital stability of standing waves for .
In this paper, we look for solutions to the following Schrödinger-Bopp-Podolsky system with prescribed L<sup>2</sup>-norm constraint , where q ≠ 0, a, ρ> 0 are constants. At first, by the classical minimizing argument, we obtain a ground state solution to the above problem for sufficiently small ρwhen . Secondly, in the case p = 6, we show the nonexistence of positive solutions by using a Liouville-type result. Finally, we argue by contradiction to investigate the orbital stability of standing waves for .
作者
Chunliu Liu
Chunliu Liu(School of Mathematical Sciences, Tiangong University, Tianjin, China)