期刊文献+

Numerical Scheme for Solving Stochastic Differential Equations with G-Lévy Process

Numerical Scheme for Solving Stochastic Differential Equations with G-Lévy Process
下载PDF
导出
摘要 In this paper, we propose numerical schemes for stochastic differential equations driven by G-Lévy process under the G-expectation framework. By using G-Itôformula and G-expectation property, we propose Euler scheme and Milstein scheme which have order-1.0 convergence rate. And two numerical experiments including Ornstein-Uhlenbeck and Black-Scholes cases are given. In this paper, we propose numerical schemes for stochastic differential equations driven by G-Lévy process under the G-expectation framework. By using G-Itôformula and G-expectation property, we propose Euler scheme and Milstein scheme which have order-1.0 convergence rate. And two numerical experiments including Ornstein-Uhlenbeck and Black-Scholes cases are given.
作者 Jiawen Mei Yifei Xin Jiawen Mei;Yifei Xin(University of Shanghai for Science and Technology, Shanghai, China)
出处 《Journal of Applied Mathematics and Physics》 2022年第2期466-474,共9页 应用数学与应用物理(英文)
关键词 G-Lévy Process G-Expectation Property SDEs Euler Scheme G-Lévy Process G-Expectation Property SDEs Euler Scheme
  • 相关文献

参考文献3

二级参考文献6

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部